Skip to main content

Candelilla Wax-Based Coatings and Films: Functional and Physicochemical Characterization

Abstract

Active coatings and films made from pectin, candelilla wax, aloe mucilage, and glycerol were functionalized with an extract rich in polyphenols from Larrea tridentata (Polyphenol Larrea extract: PLE) leaves at different concentrations (320 to 920 ppm). Antimicrobial capacity was evaluated on avocados by the inoculation of spores from phytopathogenic fungi Colletotrichum gloesporioides and Alternaria alternata. Coatings with 920 ppm of PLE presented the major antimicrobial capacity leading to 22.0 ± 0.4% of endocarp damage for C. gloesporioides and 24.5 ± 0.6% for A. alternata when compared to uncoated (control) avocados (44.8 ± 5.0% for C. gloesporioides and 47.9 ± 9.3% for A. alternata). The coating formulation with 920 ppm of PLE, which presents the highest antimicrobial capacity, was chosen for further evaluation and characterized. The coatings were evaluated in terms of stability, charge, pH, viscosity, and density, and some authors reported stability at 7 days. The films were evaluated by scanning electronic microscopy (SEM), X-ray diffraction, Fourier transformed infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and contact angle measurements. The surface topography shows that the presence and increase of PLE concentrations leads to a higher roughness of the films, and by FTIR was possible to observe the effect of the PLE incorporation on the functional groups of the film matrix. Contact angle was not affected by the incorporation of PLE in the films. The developed bioactive coating is effective to control endocarp damage by fungus invasion and thus protect avocados during storage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abdel-Aziz, S. M., Asker, M. M. S., Keera, A. A., & Mahmoud, M. G. (2016). Microbial food spoilage: control strategies for shelf life extension. In N. Garg et al. (Eds.), Microbes in food and health (pp. 239–264). New York: Springer. https://doi.org/10.1007/978-3-319-25277-3_13.

    Chapter  Google Scholar 

  2. Aguirre-Joya, J. A., Ventura-Sobrevilla, J., Martínez-Vazquez, G., Ruelas-Chacón, X., Rojas, R., Rodríguez-Herrera, R., & Aguilar, C. N. (2017). Effects of a natural bioactive coating on the quality and shelf life prolongation at different storage conditions of avocado (Persea americana Mill.) cv. Hass. Food Packaging and Shelf Life, 14, 102–107. https://doi.org/10.1016/j.fpsl.2017.09.003.

    Article  Google Scholar 

  3. Alvarez-Perez, O. B., Montañez, J., Aguilar, C. N., & Rojas, R. (2015). Pectin-candelilla wax: an alternative mixture for edible films. The Journal of Microbiology, Biotechnology and Food Sciences, 5(2), 167–171. https://doi.org/10.15414/jmbfs.2015.5.2.167-171.

    CAS  Article  Google Scholar 

  4. Amini, A. M., & Razavi, S. M. A. (2016). A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocolloids, 57, 132–158. https://doi.org/10.1016/j.foodhyd.2016.01.022.

    CAS  Article  Google Scholar 

  5. Arrebol, A. E., Sivakumar, D., Bacigalupo, R., & Korsten, L. (2010). Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection, 29(4), 369–377. https://doi.org/10.1016/j.cropro.2009.08.001.

    CAS  Article  Google Scholar 

  6. Arteaga, S., Andrade-Cetto, A., & Cardenas, R. (2005). Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. Journal of Ethnopharmacology, 98(3), 231–239. https://doi.org/10.1016/j.jep.2005.02.002.

    CAS  Article  PubMed  Google Scholar 

  7. Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., & Ueno, S. (2017). From trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffraction techniques. Food Research International, 99, 476–484. https://doi.org/10.1016/j.foodres.2017.06.015.

    CAS  Article  PubMed  Google Scholar 

  8. Bernhardt, D. C., Pérez, C. D., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13–22. https://doi.org/10.1016/j.carbpol.2017.01.031.

    CAS  Article  PubMed  Google Scholar 

  9. Bill, M., Sivakumar, D., Korsten, L., & Thompson, A. K. (2014). The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, 54, 159–157. https://doi.org/10.1016/j.cropro.2014.06.015.

    CAS  Article  Google Scholar 

  10. Cerqueira, M. A., Souza, B. W. S., Simões, J., Teixeira, J. A., Domingues, M. R. M., Coimbra, M. A., & Vicente, A. A. (2011). Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydrate Polymers, 83(1), 179–185. https://doi.org/10.1016/j.carbpol.2010.07.036.

    CAS  Article  Google Scholar 

  11. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films-a comparative study. Food Hydrocolloids, 27(1), 175–184. https://doi.org/10.1016/j.foodhyd.2011.07.007.

    CAS  Article  Google Scholar 

  12. Chetouani, A., Elkolli, M., Bounekhel, M., Benachour, D. (2014). Synthesis and properties of novel hydrogels from oxidized pectin crosslinked gelatin for biomedical applications, Polymer Bulletin, 71(9), 2303–2316. https://doi.org/10.1007/s0028.

  13. Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159–168. https://doi.org/10.1016/j.jfoodeng.2008.02.002.

    CAS  Article  Google Scholar 

  14. Chiumarelli, M., & Hubinger, M. D. (2012). Food hydrocolloids stability, solubility, mechanical and barrier properties of cassava starch e Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 28(1), 59–67. https://doi.org/10.1016/j.foodhyd.2011.12.006.

    CAS  Article  Google Scholar 

  15. Choi, A. J., Kim, C. J., Cho, Y. J., Hwang, J. K., & Kim, C. T. (2011). Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food and Bioprocess Technology, 4(6), 119–1126. https://doi.org/10.1007/s11947-011-0568-9.

    CAS  Article  Google Scholar 

  16. Cunningham-Oakes, E., Soren, O., Moussa, C., Rathor, G., Liu, Y., Coates, A., & Hu, Y. (2015). Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo. Frontiers in Microbiology, 6, 1195. https://doi.org/10.3389/fmicb.2015.01195.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Davis, R. A., Hofmann, A., Osman, A., Hall, R. A., Muhlschlegel, F. A., Vullo, D., Innocenti, A., Supuran, C. T., & Poulsen, S. A. (2011). Natural product-based phenols as novel probes for mycobacterial and fungal carbonic anhydrases. Journal of Medicinal Chemistry, 54(6), 1682–1692. https://doi.org/10.1007/s11947-011-0568-9.

    CAS  Article  PubMed  Google Scholar 

  18. De León-Zapata, M. A., Pastrana-Castro, L., Barbosa-Pereira, L., Rua-Rodríguez, M. L., Saucedo, S., Ventura-Sobrevilla, J., Salinas-Jasso, T. A., Rodríguez-Herrera, R., & Aguilar, C. N. (2017). Nanocoating with extract of tarbush to retard Fuji apples senescence. Postharvest Biology and Technology, 134, 67–75. https://doi.org/10.1016/j.postharvbio.2017.08.010.

    CAS  Article  Google Scholar 

  19. Del Vecchyo-Tenorio, G., Rodríguez-Cruz, M., Andrade-Cetto, A., & Cárdenas-Vázquez, R. (2016). Creosote bush (Larrea tridentata) improves insulin sensitivity and reduces plasma and hepatic lipids in hamsters fed a high fat and cholesterol diet. Frontiers in Pharmacology, 28(7), 194. https://doi.org/10.3389/fphar.2016.00194.

    CAS  Article  Google Scholar 

  20. Donhowe, I. G., & Fennema, O. (1993). Water vapor and oxygen permeability of wax films. Journal of American Oil Chemistis Society, 70(9), 867–873. https://doi.org/10.1007/BF02545345.

    CAS  Article  Google Scholar 

  21. Espitia, P. J. P, Wen-Xian D., Avena-Bustillos, R. J., Ferreira, N. F., McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties. A review Food Hydrocolloids, 35, 287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005.

  22. Food and Drug Administration (FDA). Accessed on 02/06/2016. Available at: http://www.ecfr.gov/cgi-bin/text-idx?SID=21de2518966bfe482299c52c6e5ae505&mc=true&node=se21.3.184_11588&rgn=div8.

  23. Gnabre, J., Bates, R., & Huang, R. C. (2015). Creosote bush lignans for human disease treatment and prevention: Perspectives on combination therapy. Journal of Traditional and Complementary Medicine, 5(3), 119–126. https://doi.org/10.1016/j.jtcme.2014.11.024.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guzmán-Beltrán, S., Rubio-Badillo, M. A., Juárez, E., Hernández-Sánchez, F., & Torres, M. (2016). Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy. International Immunopharmacology, 31, 149–157. https://doi.org/10.1016/j.intimp.2015.12.027.

    CAS  Article  PubMed  Google Scholar 

  25. Harron, A. F., Powell, M. J., Nunez, A., & Moreau, R. A. (2017). Analysis of sorghum wax and carnauba wax by reversed phase liquid chromatography mass spectrometry. Industrial Crops and Products, 98, 116–129. https://doi.org/10.1016/j.indcrop.2016.09.015.

    CAS  Article  Google Scholar 

  26. Heron, S., & Yarnell, E. (2001). The safety of low-dose Larrea tridentata (DC) Coville (creosote bush or chaparral): a retrospective clinical study. Journal of Alternative and Complementary Medicine, 7(2), 175–185. https://doi.org/10.1089/107555301750164262.

    CAS  Article  PubMed  Google Scholar 

  27. Jafari, S. M., Khanzadi, M., Mirzaei, H., Dehnad, D., Chegini, F. K., & Maghsoudlou, Y. (2015). Hydrophobicity, thermal and micro-structural properties of whey protein concentrate–pullulan–beeswax films. International Journal of Biological Macromolecules, 80, 506–511. https://doi.org/10.1016/j.ijbiomac.2015.07.017.

    CAS  Article  PubMed  Google Scholar 

  28. Jara, A. H., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F., & Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Biological Macromolecules, 113, 1233–1240. https://doi.org/10.1016/j.ijbiomac.2018.03.057.

    CAS  Article  Google Scholar 

  29. Junqueira-Gonçalves, M. P., Alarcón, E., & Niranjan, K. (2013). Development of antifungal packaging for berries extruded from recycled PET. Food Control, 33(2), 455–460. https://doi.org/10.1016/j.foodcont.2013.03.031.

    CAS  Article  Google Scholar 

  30. Kouassi, K. H. S., Bajji, M., & Jijakli, H. (2012). The control of postharvest blue and green molds of citrus in relation with essential oil–wax formulations, adherence and viscosity. Postharvest Biology and Technology, 73, 122–128. https://doi.org/10.1016/j.postharvbio.2012.06.008.

    CAS  Article  Google Scholar 

  31. Kowalczyk, D., & Baraniak, B. (2014). Effect of candelilla wax on functional properties of biopolymer emulsion films - a comparative study. Food Hydrocolloids, 41, 195–209. https://doi.org/10.1016/j.foodhyd.2014.04.004.

    CAS  Article  Google Scholar 

  32. Liu, L., Cao, J., Huang, J., Cai, Y., & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268–3273. https://doi.org/10.1016/j.biortech.2009.12.062.

    CAS  Article  PubMed  Google Scholar 

  33. Lu, J. M., Nurko, J., Weakley, S. M., Jiang, J., Kougias, P., Lin, P. H., Yao, Q., & Chen, C. (2010). Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Medical Science Monitor, 16, 93–100.

    Google Scholar 

  34. Luo, Y., Zhang, B., Whent, M., Yu, L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145–152. https://doi.org/10.1016/j.colsurfb.2011.02.020.

    CAS  Article  PubMed  Google Scholar 

  35. Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussato, S. I. (2012). Bioactive compounds (Phytostrogens) recovery from Larrea tridentate leaves by solvents extraction. Separation and Purification Technology, 88, 163–167. https://doi.org/10.1016/j.seppur.2011.12.020.

    CAS  Article  Google Scholar 

  36. Martins, S., Amorim, E. L. C., Sobrinho, T. J. S. P., Saraiva, A. M., Pisciottano, M. N. C., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2013). Antibacterial activity of crude methanolic extract and fractions obtained from Larrea tridentata leaves. Industrial Crops and Products, 41, 306–311. https://doi.org/10.1016/j.indcrop.2012.04.037.

    Article  Google Scholar 

  37. Moditsi, M., Lazaridou, A., Moschakis, T., & Biliaderis, C. G. (2014). Modifying the physical properties of dairy protein films for controlled release of antifungal agents. Food Hydrocolloid, 39, 195–203. https://doi.org/10.1016/j.foodhyd.2014.01.011.

    CAS  Article  Google Scholar 

  38. Mpho, M., Sivakumar, D., Sellamuthu, P. S., & Bautista-Banos, S. (2013). Use of lemongrass oil and modified atmosphere packaging on control of anthracnose and quality maintenance in avocado cultivars. Journal of Food Quality, 36(3), 657–670. https://doi.org/10.1111/jfq.12027.

    CAS  Article  Google Scholar 

  39. Nakayama, T., Hashimoto, T., Kajiya, K., & Kumazawa, S. (2000). Affinity of polyphenols for lipid bilayers. Biofactors, 13(1-4), 147–151. https://doi.org/10.1002/biof.5520130124.

    CAS  Article  PubMed  Google Scholar 

  40. NguyenVanLong, N., Joly, C., & Dantingy, P. (2016). Active packaging with antifungal activities. International Journal of Food Microbiology, 220(2), 73–90. https://doi.org/10.1016/j.ijfoodmicro.2016.01.001.

    CAS  Article  Google Scholar 

  41. Oregel-Zamudio, E., Angoa-Perez, M. V., Oyoque-Salcedo, G., Aguilar, C. N., & Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with bacteria biocontrol on strawberry quality during the shelf-life. Scientia Horticulturae, 214, 273–279. https://doi.org/10.1016/j.scienta.2016.11.038.

    CAS  Article  Google Scholar 

  42. Pillai, S. K., Maubane, L., Sinha-Ray, S., Khumalo, V., Bill, M., & Sivakumar, D. (2016). Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging. Journal of Applied Polymer Science, 133(8), 1–9. https://doi.org/10.1002/app.43045.

    CAS  Article  Google Scholar 

  43. Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404–419. https://doi.org/10.1016/j.meatsci.2014.06.031.

    Article  PubMed  Google Scholar 

  44. Regnier, T., Combrinck, S., du Plooy, W., & Botha, B. (2010). Evaluation of Lippia scaberrima essential oil and some pure terpenoid constituents as postharvest mycobiocides for avocado fruit. Postharvest Biology and Technology, 57(3), 176–182. https://doi.org/10.1016/j.postharvbio.2010.03.010.

    CAS  Article  Google Scholar 

  45. Rojas, R., Vicente, A., & Aguilar, C. N. (2015). Advances in fruits and vegetables preservation with edible films. B.CEPPA. Curitiba, 33(2), 43–56. https://doi.org/10.5380/cep.v33i2.47168.

    Article  Google Scholar 

  46. SAGARPA, (2016). Mexican Secretary of Agriculture and Rural Development. Available at https://www.gob.mx/agricultura. Accesed 11 August 2016.

  47. Sánchez-Aldana, D., Contretas-Esuivel, J. C., Nevárez-Morillón, G. V., & Aguilar, C. N. (2014). Characterization of edible films from pectic extracts and essential oil from Mexican lime (Spanish). CyTA - Journal of Food, 13(1), 17–25. https://doi.org/10.1080/19476337.2014.904929.

    Article  Google Scholar 

  48. Saucedo-Pompa, S., Rojas-Molina, R., Aguilera-Carbó, A. F., Saenz-Galindo, A., De la Garza, H., Jasso-Cantú, D., & Aguilar, C. N. (2009). Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Research International, 42(4), 511–515. https://doi.org/10.1016/j.foodres.2009.02.017.

    CAS  Article  Google Scholar 

  49. Seslija, S., Nesic, A., Ruzic, J., Krusic, M. K., Velickovic, S., Avolio, R., Santagata, G., & Malinconico, M. (2017). Edible blend films of pectin and poly(ethylene glycol): preparation and physico-chemical evaluation. Food Hydrocolloids, 77, 494–501. https://doi.org/10.1016/j.foodhyd.2017.10.027.

    CAS  Article  Google Scholar 

  50. SIAP, (2016). Agri-food and fisheries information service. Available at https://www.gob.mx/siap. Accesed 11 August 2016.

  51. Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015). Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 167, 89–98. https://doi.org/10.1016/j.jfoodeng.2015.07.037.

    CAS  Article  Google Scholar 

  52. Uz, M., & Altinkaya, S. A. (2011). Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT Food Science and Technology, 44(10), 2302–2309. https://doi.org/10.1016/j.lwt.2011.05.003.

    CAS  Article  Google Scholar 

  53. Valdés, A., Burgos, N., Jiménez, A., & Garrigós, M. C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865–886. https://doi.org/10.3390/coatings5040865.

    CAS  Article  Google Scholar 

  54. Valle-Guadarrama, S., Morales-Cabrera, M., Peña-Valdivia, C. B., Mora-Rodríguez, B., Alia-Tejacal, I., Corrales-García, J., & Gómez-Cruz, A. (2013). Oxidative/fermentative behaviour in the flesh of “Hass” avocado fruits under natural and controlled atmosphere conditions. Food and Bioprocess Technology, 6(1), 272–282. https://doi.org/10.1007/s11947-011-0747-8.

    CAS  Article  Google Scholar 

  55. Vieira, J. M., Flores-López, M. L., Jasso-de-Rodríguez, D., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88–97. https://doi.org/10.1016/j.postharvbio.2016.01.011.

    CAS  Article  Google Scholar 

  56. Weng, H., Boon, T., Yee, P., Abas, F., Ming, O., Wang, Y., et al. (2018). Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Food Research International, 105(August 2017), 482–491. https://doi.org/10.1016/j.foodres.2017.11.034.

    CAS  Article  Google Scholar 

  57. Yao, L., & Wang, T. (2012). Textural and physical properties of biorenewable “waxes” containing partial acylglycerides. Journal of American Chemical Society, 89(1), 155–166. https://doi.org/10.1007/s11746-011-1896-7.

    CAS  Article  Google Scholar 

Download references

Funding

Financial support was provided by National Forestry Commission of Mexico (CONAFOR), Autonomous University of Coahuila (UAdeC), Program Marie Curie of the European Union (project: Biotechnologies to valorize the regional food Biodiversity in Latin America, BiValBi), and BIOINGENIO S.A. de C.V. This research was supported by Norte Regional Operational Program 2014-2020 (Norte2020) through the European Regional Development Fund (ERDF) Nanotechnology based functional solutions (NORTE-01-0145-FEDER-000019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristobal Noé Aguilar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Joya, J.A., Cerqueira, M.A., Ventura-Sobrevilla, J. et al. Candelilla Wax-Based Coatings and Films: Functional and Physicochemical Characterization. Food Bioprocess Technol 12, 1787–1797 (2019). https://doi.org/10.1007/s11947-019-02339-2

Download citation

Keywords

  • Active films
  • Active coatings
  • Physicochemical properties
  • Candelilla
  • Pectin
  • Aloe vera
  • Antifungal capacity
  • Avocado