Skip to main content

Advertisement

Log in

Multi-enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, two different food-grade enzymes (i.e., bromelain from a pineapple stem (protease) and Pectinex® BE XXL (pectinase)) were successfully immobilized on chitosan beads and their application in pomegranate juice clarification was evaluated. The immobilization procedure was optimized for maximizing the specific activity of biocatalysts, and the best performance was reached using an immobilization solution containing 1.0 mgBSAeq/mL (for protease) and 1.8 mgBSAeq/mL (for pectinase). The biocatalysts were combined in a multi-enzymatic system and used in a fluidized bed reactor, varying the protease-to-pectinase ratio (1:2 or 1:4) and the treatment time (4 h or 8 h). The process carried out using the protease-to-pectinase ratio 1:2, for 8 h, was the most suitable in terms of immediate (− 49%) and potential (− 70%) turbidity depletion compared with the untreated juice, after 21 days. At the end of the storage period, this biotechnological approach allowed a significant reduction of haze-active molecules. All the enzymatically treated juices better preserved the anthocyanin pattern compared with the untreated juice over time. The best supplied treatment allowed better retaining the native chromatic properties of juice, preserving it from colloidal instability as well as from the possible related color degradation tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albersheim, P. (1966). Pectin lyase from fungi. Methods in Enzymology, 8, 628–631.

    Article  CAS  Google Scholar 

  • Alper, N., & Acar, J. (2004). Removal of phenolic compounds in pomegranate juices using ultrafiltration and laccase-ultrafiltration combinations. Nahrung/Food, 48(3), 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Aviram, M., Rosenblat, M., Gaitini, D., Nitecki, S., Hoffman, A., Dornfeld, L., Volkova, N., Presser, D., Attias, J., Liker, H., & Hayek, T. (2004). Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clinical Nutrition, 23(3), 423–433.

    Article  CAS  PubMed  Google Scholar 

  • Baiano, A., Terracone, C., Gambacorta, G., & La Notte, E. (2009). Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies. Journal of Food Science, 74, 258–267.

    Article  CAS  Google Scholar 

  • Bavaro, T., Cattaneo, G., Serra, I., Benucci, I., Pregnolato, M., & Terreni, M. (2016). Immobilization of neutral protease from Bacillus subtilis for regioselective hydrolysis of acetylated nucleosides: application to capecitabine synthesis. Molecules, 21, 1621.

  • Bell, C., & Hawthorne, S. (2008). Ellagic acid, pomegranate and prostate cancer: a minireview. Journal of Pharmacy and Pharmacology, 60(2), 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Benucci, I., Lombardelli, C., Cacciotti, I., Liburdi, K., Nanni, F., & Esti, M. (2016). Chitosan beads from microbial and animal sources as enzyme supports for wine application. Food Hydrocolloids, 61, 191–200.

    Article  CAS  Google Scholar 

  • Birò, E., Nemeth, A. S., Sisak, C., Feczko, T., & Gyenis, J. (2008). Preparation of chitosan particles suitable for enzyme immobilization. Journal of Biochemical and Biophysical Methods, 70(6), 1240–1246.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binging. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  Google Scholar 

  • Busto, M. D., García-Tramontín, K. E., Ortega, N., & Perez-Mateos, M. (2006). Preparation and properties of an immobilized pectinlyase for the treatment of fruit juices. Bioresource Technology, 97(13), 1477–1483.

    Article  CAS  PubMed  Google Scholar 

  • Cacciotti, I., Lombardelli, C., Benucci, I., & Esti, M. (2019). Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. Journal of Materials Research and Technology, In press, 8(4), 3644–3652.

    Article  CAS  Google Scholar 

  • Cao, L. (2005). Covalent enzyme immobilization (2 Eds). In Carrier-bound immobilized enzymes (pp. 169–316). KGaA: WILEY-VCH Verlag GmbH & Co.

    Chapter  Google Scholar 

  • Cappannella, E., Benucci, I., Lombardelli, C., Liburdi, K., Bavaro, T., & Esti, M. (2016). Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: bench-scale fluidized-bed reactor study. Food Chemistry, 210, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Cerreti, M., Liburdi, K., Benucci, I., & Esti, M. (2016). The effect of pectinase and protease treatment on turbidity and on haze active molecules in pomegranate juice. LWT-Food Science and Technology, 73, 326–333.

    Article  CAS  Google Scholar 

  • Cerreti, M., Liburdi, K., Benucci, I., Emiliani Spinelli, S., Lombardelli, C., & Esti, M. (2017). Optimization of pectinase and protease clarification treatment of pomegranate juice. LWT -Food Science and Technology, 82, 58–65.

    Article  CAS  Google Scholar 

  • Chen, H., Liu, L., Lv, S., Liu, X., Wang, M., Song, A., & Ji, X. (2010). Immobilization of Aspergillus niger xylanase on chitosan using dialdehyde starch as a coupling agent. Applied Biochemistry and Biotechnology, 162(1), 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, W. Y., Young, T. H., Yao, C. H., & Chiu, W. Y. (1999). Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials, 20(16), 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Z., Wang, F., Zhou, B., Li, J., Li, B., & Liang, H. (2019). Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocolloids, 89, 691–699.

    Article  CAS  Google Scholar 

  • Di Cosimo, R., McAuliffe, J., Poulose, A. J., & Bohlman, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42, 6437–6474.

    Article  CAS  Google Scholar 

  • Di Stefano, R., & Guidoni, S. (1989). Metodi per lo studio dei polifenoli dei vini. L' Enotecnico, 25, 81–89.

    Google Scholar 

  • Erkan, M. (2011). Pomegranate (Punica granatum L.). In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits (pp. 287–311). Oxford: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Erkan-Koç, B., Türkyılmaz, M., Yemis¸, O., & Ozkan, M. (2015). Effects of various protein- and polysaccharide-based clarification agents on antioxidative compounds and colour of pomegranate juice. Food Chemistry, 184, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Gardossi, L., Ebert, C., Ferrario, V., Braiuca, P., Basso, A., & Vaccari, L. (2008). Immobilizzazione di enzimi: ottimizzazione di biocatalizzatori industriali. La chimica e l’industria, 1, 94–100.

    Google Scholar 

  • Glories, Y. (1984). La couleur des vins rouges. Mesure, origine et interprétation. Partie I. Connaissance de la Vigne et du Vin, 18, 195–217.

    CAS  Google Scholar 

  • Grassin, C., & Fauquembergue, P. (1996). Application of pectinases in beverages. Progress in Biotechnology, 14, 453–462.

    CAS  Google Scholar 

  • Gulec, H. A., Bagci, P. O., & Bagci, U. (2017). Clarification of apple juice using polymeric ultrafiltration membranes: a comparative evaluation of membrane fouling and juice quality. Food and Bioprocess Technology, 10(5), 875–885.

    Article  CAS  Google Scholar 

  • Hale, L. P., Greer, P. K., Trinh, C. T., & James, C. L. (2005). Proteinase activity and stability of natural bromelain preparations. International Immunopharmacology, 5, 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Jana, A., Halder, S. K., Ghosh, K., Paul, T., Vágvölgyi, C., Mondal, K. C., & Mohapatra, P. K. D. (2015). Tannase immobilization by chitin-alginate based adsorption-entrapment technique and its exploitation in fruit juice clarification. Food and Bioprocess Technology, 8(11), 2319–2329.

    Article  CAS  Google Scholar 

  • Jiang, D. S., Long, S. Y., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal, 25(1), 15–23.

    Article  CAS  Google Scholar 

  • Kalaycıoğlu, Z., & Erim, F. B. (2016). Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496–507.

    Article  CAS  PubMed  Google Scholar 

  • Karangwa, E., Hayat, K., Rao, L., Nshimiyimana, D. S., Foh, M. B. K., Li, L., Ntwali, J., Raymond, L. V., Xia, S., & Zhang, X. (2012). Improving blended carrot-orange juice quality by the addition of cyclodextrins during enzymatic clarification. Food and Bioprocess Technology, 5(6), 2612–2617.

    Article  CAS  Google Scholar 

  • Kashyap, D. R., Chandra, S., Kaul, A., & Tewari, R. (2000). Production, purification and characterization of pectinase from a Bacillus sp. DT7. World Journal of Microbiology and Biotechnology, 16(3), 277–282.

    Article  CAS  Google Scholar 

  • Laudani, C. G., Habulin, M., Knez, Z., Della Porta, G., & Reverchon, E. (2007). Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. The Journal of Supercritical Fluids, 41(1), 74–81.

    Article  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

  • Miao, C., Zhonghong, L., Jianlong, W., Wupeng, G., Tianli, Y., Ronghua, L., et al. (2012). Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends in Food Science & Technology, 27, 47–56.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Mirzaaghaei, M., Goli, S. A. H., & Fathi, M. (2016). Application of sepiolite in clarification of pomegranate juice: changes on quality characteristics during process. International Journal of Food Science & Technology, 51(7), 1666–1673.

    Article  CAS  Google Scholar 

  • O’Halloran, J., O’Sullivan, M., & Casey, E. (2019). Production of whey-derived DPP-IV inhibitory peptides using an enzymatic membrane reactor. Food and Bioprocess Technology, 12(5), 799–808.

    Article  CAS  Google Scholar 

  • Onsekizoglu, P. (2013). Production of high-quality clarified pomegranate juice concentrate by membrane processes. Journal of Membrane Science, 442, 264–271.

    Article  CAS  Google Scholar 

  • Petenzi, M., Bavaro, T., Cornaggia, C., Ubiali, D., Pregnolato, M., & Pasini, D. (2012). Synthesis, post-modification and characterization of linear polystyrene-based supports for interaction with immobilized biocatalysts. Polymer International, 61, 1611–1618.

  • Pinelo, M., Zeuner, B., & Meyer, A. S. (2010). Juice clarification by protease and pectinase treatments indicates new roles of pectins and proteins in cherry juice turbidity. Food and Bioproducts Processing, 88(2-3), 259–265.

    Article  CAS  Google Scholar 

  • Reddy, M. K., Gupta, S. K., Jacob, M. R., Khan, S. I., & Ferreira, D. (2007). Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Medica, 53, 461–467.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). The chemistry of wine. Stabilization and treatments. In Handbook of enology volume 2 (2nd ed.). Chichester: John Wiley & Sons Ltd..

    Google Scholar 

  • Sakurai, K., Maegawa, T., & Takahashi, T. (2000). Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends. Polymer, 41(19), 7051–7056.

    Article  CAS  Google Scholar 

  • Saponjić, S., Knežević-Jugović, Z. D., Bezbradica, D. I., Zuza, M. G., Saied, O. A., Bosković Vragolović, N., & Mijin, D. Z. (2010). Use of Candida rugosa lipase immobilized on sepabeads for the amylcaprylate synthesis: batch and fluidized bed reactor study. Electronic Journal of Biotechnology, 13, 1–15.

    Article  CAS  Google Scholar 

  • Sepúlveda, E., Sáenz, C., Peña, A., Robert, P., Bartolomé, B., & Gómez-Cordovés, C. (2010). Influence of the genotype on the anthocyanin composition, antioxidant capacity and color of Chilean pomegranate (Punica granatum L.) juices. Chilean Journal of Agricultural Research, 70, 50–57.

    Article  Google Scholar 

  • Siebert, K. J. (2006). Haze formation in beverages. LWT - Food Science and Technology, 39(9), 987–994.

    Article  CAS  Google Scholar 

  • Siebert, K. J., Carrasco, A., & Lynn, P. Y. (1996). Formation of protein-polyphenol haze in beverages. Journal of Agricultural and Food Chemistry, 44(8), 1997–2005.

    Article  CAS  Google Scholar 

  • Sorrivas, V., Genovese, D. B., & Lonzano, J. E. (2006). Effect of pectinolytic and amylolitic enzymes on apple juice turbidity. Journal of Food Processing and Preservation, 36, 118–133.

    Article  Google Scholar 

  • Tischer, W., & Wedekind, F. (1999). Immobilised enzymes: methods and applications. In W. D. Fessner et al. (Eds.), Biocatalysis-from discovery to application. Topics in current chemistry (pp. 95–126). Berlin: Springer.

    Chapter  Google Scholar 

  • Turfan, O., Turkyilmaz, M., Yemis, O., & Ozkan, M. (2011). Anthocyanin and colour changes during processing of pomegranate (Punica granatum L. cv. Hicaznar) juice from sacs and whole fruit. Food Chemistry, 129(4), 1644–1651.

    Article  CAS  Google Scholar 

  • Turfan, O., Turkyilmaz, M., Yemis, O., & Ozkan, M. (2012). Effects of clarification and storage on anthocyanins and color of pomegranate juice concentrates. Journal of Food Quality, 35(4), 272–282.

    Article  CAS  Google Scholar 

  • Tzulker, R., Glazer, I., Bar-Ilan, I., Holland, D., Aviram, M., & Amin, R. (2007). Antioxidant activity, polyphenol content and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. Journal of Agriculture and Food Chemestry, 55(23), 9559–9570.

    Article  CAS  Google Scholar 

  • Vardin, H., & Fenercioglu, H. (2003). Study on the development of pomegranate juice processing technology: clarification of pomegranate juice. Food/Nahrung, 47(5), 300–303.

    Article  CAS  PubMed  Google Scholar 

  • Vincenzi, S., Marangon, M., Tolin, S., & Curioni, A. (2011). Protein evolution during the early stages of white winemaking and its relations with wine stability. Australian Journal of Grape and Wine Research, 17(1), 20–27.

    Article  CAS  Google Scholar 

  • Zeng, M., Fang, Z., & Xu, C. (2004). Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. Journal of Membrane Science, 230(1-2), 175–181.

    Article  CAS  Google Scholar 

  • Zhao, L., Wang, Y., Qiu, D., & Liao, X. (2014). Effect of ultrafiltration combined with high-pressure processing on safety and quality features of fresh apple juice. Food and Bioprocess Technology, 7(11), 3246–3258.

    Article  Google Scholar 

  • Zhou, G. X., Chen, G. Y., & Yan, B. B. (2014). Biodiesel production in a magnetically stabilized, fluidized bed reactor with an immobilized lipase in magnetic chitosan microspheres. Biotechnology Letters, 36(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the BioEnBi project “Biotecnologie enzimatiche innovative per processi di chiarifica sostenibili nel settore birrario” (Grant 85-2017-15362), funded by Lazio Innova Spa, Lazio Region (Italy), in the context of Progetti Gruppi di Ricerca, Lazio Innova 2018–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Lombardelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benucci, I., Mazzocchi, C., Lombardelli, C. et al. Multi-enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties. Food Bioprocess Technol 12, 1559–1572 (2019). https://doi.org/10.1007/s11947-019-02315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02315-w

Keywords

Navigation