Skip to main content

Advertisement

Log in

Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal Hydrolysate

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Subcritical water hydrolysis is an effective method for producing mannooligosaccharides from coconut meal, which is a by-product from coconut milk processing. In this study, the purification process to obtain mannooligosaccharides from coconut meal hydrolysate was investigated. The effects of adsorbent (activated carbon and bentonite), concentration (1–10% w/v), and adsorption time (5–60 min) were studied for impurities removal. The activated carbon showed much higher efficiency for impurities removal. Mannooligosaccharides were precipitated using ethanol at different concentrations (0–90% v/v) and initial carbohydrate contents (50, 100, and 200 g/L). The results showed that the ethanol concentration at 90% v/v and initial carbohydrate content of 200 g/L gave the highest recovery of saccharides (31 g/L). The obtained precipitate contained 9.7, 22.6, 12.9, 19.4, 19.4, and 16.1% w/w of saccharides with 1 to 6 degree of polymerization, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Albert, I., Víctor, F., Salvador, G., & Alfonso, G. (2012). Discoloration kinetics of clarified apple juice treated with Lewatit® S 4528 adsorbent resin during processing. Food and Bioprocess Technology, 5(6), 2132–2139. https://doi.org/10.1007/s11947-011-0649-9.

  • Altmann, K., Clawin-Rädecker, I., Hoffmann, W., & Lorenzen, P. C. (2016). Nanofiltration enrichment of milk oligosaccharides (MOS) in relation to process parameters. Food and Bioprocess Technology, 9(11), 1924–1936. https://doi.org/10.1007/s11947-016-1763-5.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis of the AOAC (15th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • AOAC. (2000). Official methods of analysis of AOAC International (17th ed.). Arlington: AOAC International.

    Google Scholar 

  • Asano, I., Hamaguchi, K., Fujii, S., & Iino, H. (2003). In vitrodigestibility and fermentation of mannooligosaccharides from coffee mannan. Food Science and Technology Research, 9(1), 62–66. https://doi.org/10.3136/fstr.9.62.

  • Baldassarre, S., Babbar, N., Van Roy, S., Dejonghe, W., Maesen, M., Sforza, S., et al. (2018). Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chemistry, 267, 101–110. https://doi.org/10.1016/j.foodchem.2017.10.055.

    Article  CAS  PubMed  Google Scholar 

  • Balto, A. S., Lapis, T. J., Silver, R. K., Ferreira, A. J., Beaudry, C. M., Lim, J., & Penner, M. H. (2016). On the use of differential solubility in aqueous ethanol solutions to narrow the DP range of food-grade starch hydrolysis products. Food Chemistry, 197(Part A, 872–880. https://doi.org/10.1016/j.foodchem.2015.10.120.

    Article  CAS  PubMed  Google Scholar 

  • Bunyakiat, T., & Khuwijitjaru, P. (2016). Decolorization of hydrolysate of coconut meal using activated carbon after subcritical water treatment. Food and Applied Bioscience Journal, 4(3), 151–160.

    Google Scholar 

  • Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gı́rio, F. M. (2005). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 40(3–4), 1215–1223. https://doi.org/10.1016/j.procbio.2004.04.015.

    Article  CAS  Google Scholar 

  • Gullón, P., Gullón, B., González-Munñoz, M. J., Alonso, J. L., & Parajó, J. C. (2014). Production and bioactivity of oligosaccharides from biomass hemicelluloses. In F. J. Moreno & M. L. Sanz (Eds.), Food oligosaccharides: production, analysis and bioactivity (pp. 88–106). Oxford: Wiley.

    Chapter  Google Scholar 

  • Gullόn, B., Gόmez, B., Martínez-Sabajanes, M., Yáñez, R., Parajό, J. C., & Alonso, J. L. (2013). Pectic oligosaccharides: Manufacture and functional properties. Trends in Food Science & Technology, 30(2), 153–161. https://doi.org/10.1016/j.tifs.2013.01.006.

    Article  CAS  Google Scholar 

  • Holck, J., Hjernø, K., Lorentzen, A., Vigsnæs, L. K., Hemmingsen, L., Licht, T. R., Mikkelsen, J. D., & Meyer, A. S. (2011). Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochemistry, 46(5), 1039–1049. https://doi.org/10.1016/j.procbio.2011.01.013.

    Article  CAS  Google Scholar 

  • Hossain, M. Z., Abe, J.-I., & Hizukuri, S. (1996). Multiple forms of β-mannanase from Bacillus sp. KK01. Enzyme and Microbial Technology, 18(2), 95–98. https://doi.org/10.1016/0141-0229(95)00071-2.

    Article  CAS  Google Scholar 

  • Hu, X., Liu, C., Jin, Z., & Tian, Y. (2015). Fractionation of starch hydrolysate into dextrin fractions with low dispersity by gradient alcohol precipitation. Separation and Purification Technology, 151, 201–210. https://doi.org/10.1016/j.seppur.2015.07.044.

    Article  CAS  Google Scholar 

  • Jin, F., Wang, Y., Zeng, X., Shen, Z., & Yao, G. (2014). Water under high temperature and pressure conditions and its applications to develop green technologies for biomass conversion. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion (pp. 3–28). Berlin: Springer-Verlag Berlin Heidelberg.

    Chapter  Google Scholar 

  • Khuwijitjaru, P. (2016). Utilization of plant-based agricultural waste by subcritical water treatment. Japan Journal of Food Engineering, 17(2), 33–39. https://doi.org/10.11301/jsfe.17.33.

    Article  Google Scholar 

  • Khuwijitjaru, P., Watsanit, K., & Adachi, S. (2012). Carbohydrate content and composition of product from subcritical water treatment of coconut meal. Journal of Industrial and Engineering Chemistry, 18(1), 225–229. https://doi.org/10.1016/j.jiec.2011.11.010.

    Article  CAS  Google Scholar 

  • Khuwijitjaru, P., Pokpong, A., Klinchongkon, K., & Adachi, S. (2014). Production of oligosaccharides from coconut meal by subcritical water treatment. International Journal of Food Science and Technology, 49(8), 1946–1952. https://doi.org/10.1111/ijfs.12524.

    Article  CAS  Google Scholar 

  • Khuwijitjaru, P., Koomyart, I., Kobayashi, T., & Adachi, S. (2017). Hydrolysis of konjac flour under subcritical water conditions. Chiang Mai Journal of Science, 44(3), 988–992.

    CAS  Google Scholar 

  • Klinchongkon, K., Khuwijitjaru, P., Wiboonsirikul, J., & Adachi, S. (2017). Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. Journal of Food Process Engineering, 40(1), e12269. https://doi.org/10.1111/jfpe.12269.

    Article  CAS  Google Scholar 

  • Koivula, E., Kallioinen, M., Sainio, T., Luque, S., & Mänttäri, M. (2012). Adsorption to improve filtration performance in treatment of wood-based hydrolysates. Procedia Engineering, 44, 1384–1386. https://doi.org/10.1016/j.proeng.2012.08.796.

    Article  Google Scholar 

  • Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N. P., & Rai, D. K. (2018). Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food and Bioprocess Technology, 11(2), 223–241. https://doi.org/10.1007/s11947-017-1961-9.

    Article  CAS  Google Scholar 

  • Kusakabe, I., Takahashi, R., Murakami, K., Maekawa, A., & Suzuki, T. (1983). Preparation of crystalline β-1, 4-mannooligosaccharides from copra mannan by a mannanase from Streptomyces. Agricultural and Biological Chemistry, 47(10), 2391–2392. https://doi.org/10.1271/bbb1961.47.2391.

    Article  CAS  Google Scholar 

  • Kwon, K., Park, K. H., & Rhee, K. C. (1996). Fractionation and characterization of proteins from coconut (Cocos nucifera L.). Journal of Agricultural and Food Chemistry, 44(7), 1741–1745. https://doi.org/10.1021/jf9504273.

    Article  CAS  Google Scholar 

  • Oliveira, D. L., Wilbey, R. A., Grandison, A. S., & Roseiro, L. B. (2014). Natural caprine whey oligosaccharides separated by membrane technology and profile evaluation by capillary electrophoresis. Food and Bioprocess Technology, 7(3), 915–920. https://doi.org/10.1007/s11947-013-1153-1.

    Article  CAS  Google Scholar 

  • Powell, T., Bowra, S., & Cooper, H. J. (2016). Subcritical water processing of proteins: an alternative to enzymatic digestion? Analytical Chemistry, 88(12), 6425–6432. https://doi.org/10.1021/acs.analchem.6b01013.

    Article  CAS  PubMed  Google Scholar 

  • Rungruangsaphakun, J., & Keawsompong, S. (2018). Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production. 3 Biotech, 8(3), 169. https://doi.org/10.1007/s13205-018-1178-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salak Asghari, F., & Yoshida, H. (2006). Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research, 45(7), 2163–2173. https://doi.org/10.1021/ie051088y.

    Article  CAS  Google Scholar 

  • Salinardi, T. C., Rubin, K. H., Black, R. M., & St-Onge, M. P. (2010). Coffee mannooligosaccharides, consumed as part of a free-living, weight-maintaining diet, increase the proportional reduction in body volume in overweight men. Journal of Nutrition, 140(11), 1943–1948. https://doi.org/10.3945/jn.110.128207.

    Article  CAS  PubMed  Google Scholar 

  • Sen, D., Gosling, A., Stevens, G. W., Bhattacharya, P. K., Barber, A. R., Kentish, S. E., Bhattacharjee, C., & Gras, S. L. (2011). Galactosyl oligosaccharide purification by ethanol precipitation. Food Chemistry, 128(3), 773–777. https://doi.org/10.1016/j.foodchem.2011.03.076.

    Article  CAS  Google Scholar 

  • Sinclair, H. R., de Slegte, J., Gibson, G. R., & Rastall, R. A. (2009). Galactooligosaccharides (GOS) inhibitvibrio cholerae toxin binding to its GM1 receptor. Journal of Agricultural and Food Chemistry, 57(8), 3113–3119. https://doi.org/10.1021/jf8034786.

  • Sunphorka, S., Chavasiri, W., Oshima, Y., & Ngamprasertsith, S. (2012). Kinetic studies on rice bran protein hydrolysis in subcritical water. Journal of Supercritical Fluids, 65, 54–60. https://doi.org/10.1016/j.supflu.2012.02.017.

    Article  CAS  Google Scholar 

  • Swennen, K., Courtin, C. M., Van der Bruggen, B., Vandecasteele, C., & Delcour, J. A. (2005). Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydrate Polymers, 62(3), 283–292. https://doi.org/10.1016/j.carbpol.2005.08.001.

    Article  CAS  Google Scholar 

  • Thongsook, T., & Chaijamrus, S. (2018). Optimization of enzymatic hydrolysis of copra meal: compositions and properties of the hydrolysate. Journal of Food Science and Technology, 55(9), 3721–3730. https://doi.org/10.1007/s13197-018-3302-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinidad, T. P., Mallillin, A. C., Valdez, D. H., Loyola, A. S., Askali-Mercado, F. C., Castillo, J. C., Encabo, R. R., Masa, D. B., Maglaya, A. S., & Chua, M. T. (2006). Dietary fiber from coconut flour: a functional food. Innovative Food Science & Emerging Technologies, 7(4), 309–317. https://doi.org/10.1016/j.ifset.2004.04.003.

    Article  CAS  Google Scholar 

  • Xu, J., Yue, R. Q., Liu, J., Ho, H. M., Yi, T., Chen, H. B., & Han, Q. B. (2014). Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation. International Journal of Biological Macromolecules, 67, 205–209. https://doi.org/10.1016/j.ijbiomac.2014.03.036.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was partly funded by a grant from Silpakorn University Research and development Institute [SURDI 53/02/03].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramote Khuwijitjaru.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinchongkon, K., Bunyakiat, T., Khuwijitjaru, P. et al. Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal Hydrolysate. Food Bioprocess Technol 12, 1197–1204 (2019). https://doi.org/10.1007/s11947-019-02288-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02288-w

Keywords

Profiles

  1. Khwanjai Klinchongkon