Abstract
Subcritical water hydrolysis is an effective method for producing mannooligosaccharides from coconut meal, which is a by-product from coconut milk processing. In this study, the purification process to obtain mannooligosaccharides from coconut meal hydrolysate was investigated. The effects of adsorbent (activated carbon and bentonite), concentration (1–10% w/v), and adsorption time (5–60 min) were studied for impurities removal. The activated carbon showed much higher efficiency for impurities removal. Mannooligosaccharides were precipitated using ethanol at different concentrations (0–90% v/v) and initial carbohydrate contents (50, 100, and 200 g/L). The results showed that the ethanol concentration at 90% v/v and initial carbohydrate content of 200 g/L gave the highest recovery of saccharides (31 g/L). The obtained precipitate contained 9.7, 22.6, 12.9, 19.4, 19.4, and 16.1% w/w of saccharides with 1 to 6 degree of polymerization, respectively.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Albert, I., Víctor, F., Salvador, G., & Alfonso, G. (2012). Discoloration kinetics of clarified apple juice treated with Lewatit® S 4528 adsorbent resin during processing. Food and Bioprocess Technology, 5(6), 2132–2139. https://doi.org/10.1007/s11947-011-0649-9.
Altmann, K., Clawin-Rädecker, I., Hoffmann, W., & Lorenzen, P. C. (2016). Nanofiltration enrichment of milk oligosaccharides (MOS) in relation to process parameters. Food and Bioprocess Technology, 9(11), 1924–1936. https://doi.org/10.1007/s11947-016-1763-5.
AOAC. (1990). Official methods of analysis of the AOAC (15th ed.). Arlington: Association of Official Analytical Chemists.
AOAC. (2000). Official methods of analysis of AOAC International (17th ed.). Arlington: AOAC International.
Asano, I., Hamaguchi, K., Fujii, S., & Iino, H. (2003). In vitrodigestibility and fermentation of mannooligosaccharides from coffee mannan. Food Science and Technology Research, 9(1), 62–66. https://doi.org/10.3136/fstr.9.62.
Baldassarre, S., Babbar, N., Van Roy, S., Dejonghe, W., Maesen, M., Sforza, S., et al. (2018). Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chemistry, 267, 101–110. https://doi.org/10.1016/j.foodchem.2017.10.055.
Balto, A. S., Lapis, T. J., Silver, R. K., Ferreira, A. J., Beaudry, C. M., Lim, J., & Penner, M. H. (2016). On the use of differential solubility in aqueous ethanol solutions to narrow the DP range of food-grade starch hydrolysis products. Food Chemistry, 197(Part A, 872–880. https://doi.org/10.1016/j.foodchem.2015.10.120.
Bunyakiat, T., & Khuwijitjaru, P. (2016). Decolorization of hydrolysate of coconut meal using activated carbon after subcritical water treatment. Food and Applied Bioscience Journal, 4(3), 151–160.
Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gı́rio, F. M. (2005). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 40(3–4), 1215–1223. https://doi.org/10.1016/j.procbio.2004.04.015.
Gullón, P., Gullón, B., González-Munñoz, M. J., Alonso, J. L., & Parajó, J. C. (2014). Production and bioactivity of oligosaccharides from biomass hemicelluloses. In F. J. Moreno & M. L. Sanz (Eds.), Food oligosaccharides: production, analysis and bioactivity (pp. 88–106). Oxford: Wiley.
Gullόn, B., Gόmez, B., Martínez-Sabajanes, M., Yáñez, R., Parajό, J. C., & Alonso, J. L. (2013). Pectic oligosaccharides: Manufacture and functional properties. Trends in Food Science & Technology, 30(2), 153–161. https://doi.org/10.1016/j.tifs.2013.01.006.
Holck, J., Hjernø, K., Lorentzen, A., Vigsnæs, L. K., Hemmingsen, L., Licht, T. R., Mikkelsen, J. D., & Meyer, A. S. (2011). Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochemistry, 46(5), 1039–1049. https://doi.org/10.1016/j.procbio.2011.01.013.
Hossain, M. Z., Abe, J.-I., & Hizukuri, S. (1996). Multiple forms of β-mannanase from Bacillus sp. KK01. Enzyme and Microbial Technology, 18(2), 95–98. https://doi.org/10.1016/0141-0229(95)00071-2.
Hu, X., Liu, C., Jin, Z., & Tian, Y. (2015). Fractionation of starch hydrolysate into dextrin fractions with low dispersity by gradient alcohol precipitation. Separation and Purification Technology, 151, 201–210. https://doi.org/10.1016/j.seppur.2015.07.044.
Jin, F., Wang, Y., Zeng, X., Shen, Z., & Yao, G. (2014). Water under high temperature and pressure conditions and its applications to develop green technologies for biomass conversion. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion (pp. 3–28). Berlin: Springer-Verlag Berlin Heidelberg.
Khuwijitjaru, P. (2016). Utilization of plant-based agricultural waste by subcritical water treatment. Japan Journal of Food Engineering, 17(2), 33–39. https://doi.org/10.11301/jsfe.17.33.
Khuwijitjaru, P., Watsanit, K., & Adachi, S. (2012). Carbohydrate content and composition of product from subcritical water treatment of coconut meal. Journal of Industrial and Engineering Chemistry, 18(1), 225–229. https://doi.org/10.1016/j.jiec.2011.11.010.
Khuwijitjaru, P., Pokpong, A., Klinchongkon, K., & Adachi, S. (2014). Production of oligosaccharides from coconut meal by subcritical water treatment. International Journal of Food Science and Technology, 49(8), 1946–1952. https://doi.org/10.1111/ijfs.12524.
Khuwijitjaru, P., Koomyart, I., Kobayashi, T., & Adachi, S. (2017). Hydrolysis of konjac flour under subcritical water conditions. Chiang Mai Journal of Science, 44(3), 988–992.
Klinchongkon, K., Khuwijitjaru, P., Wiboonsirikul, J., & Adachi, S. (2017). Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. Journal of Food Process Engineering, 40(1), e12269. https://doi.org/10.1111/jfpe.12269.
Koivula, E., Kallioinen, M., Sainio, T., Luque, S., & Mänttäri, M. (2012). Adsorption to improve filtration performance in treatment of wood-based hydrolysates. Procedia Engineering, 44, 1384–1386. https://doi.org/10.1016/j.proeng.2012.08.796.
Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N. P., & Rai, D. K. (2018). Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food and Bioprocess Technology, 11(2), 223–241. https://doi.org/10.1007/s11947-017-1961-9.
Kusakabe, I., Takahashi, R., Murakami, K., Maekawa, A., & Suzuki, T. (1983). Preparation of crystalline β-1, 4-mannooligosaccharides from copra mannan by a mannanase from Streptomyces. Agricultural and Biological Chemistry, 47(10), 2391–2392. https://doi.org/10.1271/bbb1961.47.2391.
Kwon, K., Park, K. H., & Rhee, K. C. (1996). Fractionation and characterization of proteins from coconut (Cocos nucifera L.). Journal of Agricultural and Food Chemistry, 44(7), 1741–1745. https://doi.org/10.1021/jf9504273.
Oliveira, D. L., Wilbey, R. A., Grandison, A. S., & Roseiro, L. B. (2014). Natural caprine whey oligosaccharides separated by membrane technology and profile evaluation by capillary electrophoresis. Food and Bioprocess Technology, 7(3), 915–920. https://doi.org/10.1007/s11947-013-1153-1.
Powell, T., Bowra, S., & Cooper, H. J. (2016). Subcritical water processing of proteins: an alternative to enzymatic digestion? Analytical Chemistry, 88(12), 6425–6432. https://doi.org/10.1021/acs.analchem.6b01013.
Rungruangsaphakun, J., & Keawsompong, S. (2018). Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production. 3 Biotech, 8(3), 169. https://doi.org/10.1007/s13205-018-1178-2.
Salak Asghari, F., & Yoshida, H. (2006). Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research, 45(7), 2163–2173. https://doi.org/10.1021/ie051088y.
Salinardi, T. C., Rubin, K. H., Black, R. M., & St-Onge, M. P. (2010). Coffee mannooligosaccharides, consumed as part of a free-living, weight-maintaining diet, increase the proportional reduction in body volume in overweight men. Journal of Nutrition, 140(11), 1943–1948. https://doi.org/10.3945/jn.110.128207.
Sen, D., Gosling, A., Stevens, G. W., Bhattacharya, P. K., Barber, A. R., Kentish, S. E., Bhattacharjee, C., & Gras, S. L. (2011). Galactosyl oligosaccharide purification by ethanol precipitation. Food Chemistry, 128(3), 773–777. https://doi.org/10.1016/j.foodchem.2011.03.076.
Sinclair, H. R., de Slegte, J., Gibson, G. R., & Rastall, R. A. (2009). Galactooligosaccharides (GOS) inhibitvibrio cholerae toxin binding to its GM1 receptor. Journal of Agricultural and Food Chemistry, 57(8), 3113–3119. https://doi.org/10.1021/jf8034786.
Sunphorka, S., Chavasiri, W., Oshima, Y., & Ngamprasertsith, S. (2012). Kinetic studies on rice bran protein hydrolysis in subcritical water. Journal of Supercritical Fluids, 65, 54–60. https://doi.org/10.1016/j.supflu.2012.02.017.
Swennen, K., Courtin, C. M., Van der Bruggen, B., Vandecasteele, C., & Delcour, J. A. (2005). Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydrate Polymers, 62(3), 283–292. https://doi.org/10.1016/j.carbpol.2005.08.001.
Thongsook, T., & Chaijamrus, S. (2018). Optimization of enzymatic hydrolysis of copra meal: compositions and properties of the hydrolysate. Journal of Food Science and Technology, 55(9), 3721–3730. https://doi.org/10.1007/s13197-018-3302-z.
Trinidad, T. P., Mallillin, A. C., Valdez, D. H., Loyola, A. S., Askali-Mercado, F. C., Castillo, J. C., Encabo, R. R., Masa, D. B., Maglaya, A. S., & Chua, M. T. (2006). Dietary fiber from coconut flour: a functional food. Innovative Food Science & Emerging Technologies, 7(4), 309–317. https://doi.org/10.1016/j.ifset.2004.04.003.
Xu, J., Yue, R. Q., Liu, J., Ho, H. M., Yi, T., Chen, H. B., & Han, Q. B. (2014). Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation. International Journal of Biological Macromolecules, 67, 205–209. https://doi.org/10.1016/j.ijbiomac.2014.03.036.
Funding
This research was partly funded by a grant from Silpakorn University Research and development Institute [SURDI 53/02/03].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Klinchongkon, K., Bunyakiat, T., Khuwijitjaru, P. et al. Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal Hydrolysate. Food Bioprocess Technol 12, 1197–1204 (2019). https://doi.org/10.1007/s11947-019-02288-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-019-02288-w


