Skip to main content
Log in

Crust Formation and Microstructural Changes of Gingko Biloba Seeds During Drying

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Gingko biloba (GB) seeds were dried by hot air under drying temperature of 60, 70, 80, and 90 °C. The crust formation of GB seeds during drying process was monitored by stereomicroscopy. A line dividing the illuminated and dark part was observed from the stereoscopic image, of which the dark part was the crust layer. The degree of crust under drying process was represented by crust ratio rather than the absolute thickness of the crust layer due to the shrinkage phenomenon during drying. The crust ratio increased with the drying time in all cases. It was also found that drying temperatures had significant effects on the crust formation. Zero-order model was successfully applied to describe the crust ratio changes. Activation energy for crust formation was calculated for 53.91 kJ/mol by the Arrhenius equation. The microstructure observed by scanning electron microscope (SEM) indicates that the crust layer had an obvious dense structure compared with the non-crust part, which well proved the reasonableness of using stereomicroscope to evaluate the crust degree. The combination of the two microscopy techniques (stereomicroscopy and SEM) provides a feasible method for observation and evaluation of the crust formation in the drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achanta, S., & Okos, M. (1996). Predicting the quality of dehydrated foods and biopolymers — research needs and opportunities. Drying Technology, 14(6), 1329–1368.

    Article  CAS  Google Scholar 

  • AOAC (1990). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.

  • Bai, Y., Rahman, M. S., Perera, C. O., Smith, B., & Melton, L. D. (2002). Structural changes in apple rings during convection air-drying with controlled temperature and humidity. Journal of Agricultural and Food Chemistry, 50(11), 3179–3185.

    Article  CAS  PubMed  Google Scholar 

  • Bai, J., Gao, Z., Xiao, H., Wang, X., & Zhang, Q. (2013). Polyphenol oxidase inactivation and vitamin C degradation kinetics of Fuji apple quarters by high humidity air impingement blanching. International Journal of Food Science and Technology, 48(6), 1135–1141.

    Article  CAS  Google Scholar 

  • Bai, J., Xiao, H., Ma, H., & Zhou, C. (2018). Artificial neural network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. Journal of Food Quality, 2018, 1–8. https://doi.org/10.1155/2018/3278595.

    Article  CAS  Google Scholar 

  • Blasco, R., Esteve, M. J., Frı́gola, A., & Rodrigo, M. (2004). Ascorbic acid degradation kinetics in mushrooms in a high-temperature short-time process controlled by a thermoresistometer. LWT - Food Science and Technology, 37(2), 171–175.

    Article  CAS  Google Scholar 

  • Cai, J., Cai, C., Man, J., Xu, B., & Wei, C. (2014). Physicochemical properties of ginkgo kernal starch. International Journal of Food Properties, 18(2), 380–391.

    Article  CAS  Google Scholar 

  • Cao, X., Zhang, M., Fang, Z., Mujumdar, A. S., Jiang, H., Qian, H., & Ai, H. (2016). Drying kinetics and product quality of green soybean under different microwave drying methods. Drying Technology, 35(2), 240–248.

    Article  CAS  Google Scholar 

  • Chungcharoen, T., Prachayawarakorn, S., Tungtrakul, P., & Soponronnarit, S. (2015). Effects of germination time and drying temperature on drying characteristics and quality of germinated paddy. Food and Bioproducts Processing, 94, 707–716.

    Article  CAS  Google Scholar 

  • Corzo, O., Bracho, N., Pereira, A., & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT - Food Science and Technology, 41(10), 2023–2028.

    Article  CAS  Google Scholar 

  • Demiray, E., & Tulek, Y. (2015). Color degradation kinetics of carrot (Daucus carota L.) slices during hot air drying. Journal of Food Processing and Preservation, 39(6), 800–805.

    Article  CAS  Google Scholar 

  • Demirel, D., & Turhan, M. (2003). Air-drying behavior of Dwarf Cavendish and Gros Michel banana slices. Journal of Food Engineering, 59(1), 1–11.

    Article  Google Scholar 

  • Deng, L., Yang, X., Mujumdar, A. S., Zhao, J., Wang, D., Zhang, Q., Wang, J., Gao, Z., & Xiao, H. (2017). Red pepper (Capsicum annuum L.) drying: effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technology, 36(8), 893–907.

    Article  CAS  Google Scholar 

  • Falade, K. O., & Solademi, O. J. (2010). Modelling of air drying of fresh and blanched sweet potato slices. International Journal of Food Science & Technology, 45(2), 278–288.

    Article  CAS  Google Scholar 

  • Fang, S., Wang, Z., Hu, X., & Datta, A. K. (2009). Hot-air drying of whole fruit Chinese jujube (Zizyphus jujuba Miller): physicochemical properties of dried products. International Journal of Food Science and Technology, 44(7), 1415–1421.

    Article  CAS  Google Scholar 

  • Gordon, M., & Taylor, J. S. (1952). Ideal copolymers and the second - order transitions of synthetic rubbers. i. non - crystalline copolymers[J]. Journal of Chemical Technology & Biotechnology, 2(9), 493–500.

  • Gou, P., Comaposada, J., Arnau, J., & Pakowski, Z. (2006). On-line determination of water activity at the lean surface of meat products during drying and its relationship with the crusting development. Drying Technology, 23(8), 1641–1652.

    Article  Google Scholar 

  • Gulati, T., & Datta, A. K. (2015). Mechanistic understanding of case-hardening and texture development during drying of food materials. Journal of Food Engineering, 166, 119–138.

    Article  CAS  Google Scholar 

  • Ju, H., Zhang, Q., Mujumdar, A. S., Fang, X., Xiao, H., & Gao, Z. (2016). Hot-air drying kinetics of yam slices under step change in relative humidity. International Journal of Food Engineering, 12(8), 783–792.

    Article  Google Scholar 

  • Jumah, R., Banat, F., Al-Asheh, S., & Hammad, S. (2004). Drying kinetics of tomato paste. International Journal of Food Properties, 7(2), 253–259.

    Article  Google Scholar 

  • Kocabiyik, H., Yilmaz, N., Tuncel, N. B., Sumer, S. K., & Buyukcan, M. B. (2015). Drying, energy, and some physical and nutritional quality properties of tomatoes dried with short-infrared radiation. Food and Bioprocess Technology, 8(3), 516–525.

    Article  CAS  Google Scholar 

  • Kowalski, S. J., & Mielniczuk, B. (2006). Drying-induced stresses in macaroni dough. Drying Technology, 24(9), 1093–1099.

    Article  Google Scholar 

  • Kumar, H. P., Nagaraju, P. Y., Radhakrshna, K., & Bawa, A. (2004). Effect of dehydration techniques on the quality of onion slices. Journal of Food Science and Technology-Mysore, 41(4), 397–400.

    Google Scholar 

  • Kurozawa, L. E., Hubinger, M. D., & Park, K. J. (2012). Glass transition phenomenon on shrinkage of papaya during convective drying. Journal of Food Engineering, 108(1), 43–50.

    Article  Google Scholar 

  • Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT, 101, 630–638.

    Article  CAS  Google Scholar 

  • Llave, Y., Takemori, K., Fukuoka, M., Takemori, T., Tomita, H., & Sakai, N. (2016). Mathematical modeling of shrinkage deformation in eggplant undergoing simultaneous heat and mass transfer during convection-oven roasting. Journal of Food Engineering, 178, 124–136.

    Article  Google Scholar 

  • Marabi, A., Livings, S., Jacobson, M., & Saguy, I. S. (2003). Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology, 217(4), 311–318.

    Article  CAS  Google Scholar 

  • Mayor, L., Silva, M. A., & Sereno, A. M. (2005). Microstructural changes during drying of apple slices. Drying Technology, 23(9–11), 2261–2276.

    Article  Google Scholar 

  • Miao, M., Jiang, H., Jiang, B., Cui, S. W., Jin, Z., & Zhang, T. (2012). Structure and functional properties of starches from Chinese ginkgo (Ginkgo biloba L.) nuts. Food Research International, 49(1), 303–310.

    Article  CAS  Google Scholar 

  • Moon, J. H., Kim, M. J., Chung, D. H., Pan, C., & Yoon, W. B. (2014). Drying characteristics of sea cucumber (Stichopus japonicas Selenka) using far infrared radiation drying and hot air drying. Journal of Food Processing and Preservation, 38(4), 1534–1546.

    Article  Google Scholar 

  • Moon, J. H., Pan, C. H., & Yoon, W. B. (2015). Drying characteristics and thermal degradation kinetics of hardness, anthocyanin content and colour in purple- and red-fleshed potato (Solanum tuberosum L.) during hot air drying. International Journal of Food Science & Technology, 50(5), 1255–1267.

    Article  CAS  Google Scholar 

  • Niamnuy, C., Devahastin, S., & Soponronnarit, S. (2014). Some recent advances in microstructural modification and monitoring of foods during drying: a review. Journal of Food Engineering, 123, 148–156.

    Article  Google Scholar 

  • Olatunde, G. A., & Atungulu, G. G. (2018). Milling behavior and microstructure of rice dried using microwave set at 915 MHz frequency. Journal of Cereal Science, 80, 167–173.

    Article  CAS  Google Scholar 

  • Orikasa, T., Tagawa, A., Soma, S., Iimoto, M., & Ogawa, Y. (2005). Hot air drying characteristics of fruits and vegetables and surface hardening of samples during drying. Journal of the Japanese Society of Agricultural Machinery, 67(6), 62–70.

    Google Scholar 

  • Orikasa, T., Wu, L., Shiina, T., & Tagawa, A. (2008). Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering, 85(2), 303–308.

  • Ortiz-García-Carrasco, B., Yañez-Mota, E., Pacheco-Aguirre, F. M., Ruiz-Espinosa, H., García-Alvarado, M. A., Cortés-Zavaleta, O., & Ruiz-López, I. I. (2015). Drying of shrinkable food products: appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. Journal of Food Engineering, 144, 138–147.

    Article  Google Scholar 

  • Pimpaporn, P., Devahastin, S., & Chiewchan, N. (2007). Effects of combined pretreatments on drying kinetics and quality of potato chips undergoing low-pressure superheated steam drying. Journal of Food Engineering, 81(2), 318–329.

    Article  CAS  Google Scholar 

  • Ramos, I. N., Brandão, T. R. S., & Silva, C. L. M. (2003). Structural changes during air drying of fruits and vegetables. Food Science and Technology International, 9(3), 201–206.

    Article  Google Scholar 

  • Ramos, I. N., Silva, C. L. M., Sereno, A. M., & Aguilera, J. M. (2004). Quantification of microstructural changes during first stage air drying of grape tissue. Journal of Food Engineering, 62(2), 159–164.

    Article  Google Scholar 

  • Ramos, I. N., Brandao, T., & Silva, C. (2005). Integrated approach on solar drying, pilot convective drying and microstructural changes. Journal of Food Engineering, 67(1–2), 195–203.

    Article  Google Scholar 

  • Rodríguez, Ó., Llabrés, P. J., Simal, S., Femenia, A., & Rosselló, C. (2015). Intensification of predrying treatments by means of ultrasonic assistance: effects on water mobility, PPO activity, microstructure, and drying kinetics of apple. Food and Bioprocess Technology, 8(3), 503–515.

    Article  CAS  Google Scholar 

  • Sappati, P. K., Nayak, B., & Walsum, G. P. V. (2017). Effect of glass transition on the shrinkage of sugar kelp (Saccharina latissima) during hot air convective drying. Journal of Food Engineering, 210, 50–61.

    Article  CAS  Google Scholar 

  • Speckhahn, A., Srzednicki, G., & Desai, D. K. (2010). Drying of beef in superheated steam. Drying Technology, 28(9), 1072–1082.

    Article  CAS  Google Scholar 

  • Tsuruta, T., Tanigawa, H., & Sashi, H. (2015). Study on shrinkage deformation of food in microwave–vacuum drying. Drying Technology, 33(15–16), 1830–1836.

  • Udomkun, P., Nagle, M., Argyropoulos, D., Mahayothee, B., & Müller, J. (2016). Multi-sensor approach to improve optical monitoring of papaya shrinkage during drying. Journal of Food Engineering, 189, 82–89.

    Article  Google Scholar 

  • Wang, J., Yang, X., Mujumdar, A. S., Wang, D., Zhao, J., Fang, X., Zhang, Q., Xie, L., Gao, Z., & Xiao, H. (2017). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT, 77, 337–347.

    Article  CAS  Google Scholar 

  • Wang, J., Law, C., Nema, P. K., Zhao, J., Liu, Z., Deng, L., Gao, Z., & Xiao, H. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129–138.

    Article  CAS  Google Scholar 

  • Xiao, H. W., Yao, X. D., Lin, H., Yang, W. X., Meng, J. S., & Gao, Z. J. (2012). Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. Journal of Food Process Engineering, 35(3), 370–390.

    Article  Google Scholar 

  • Xiao, H., Bai, J., Xie, L., Sun, D., & Gao, Z. (2015). Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food and Bioproducts Processing, 94, 581–591.

    Article  CAS  Google Scholar 

  • Xie, L., Mujumdar, A. S., Zhang, Q., Wang, J., Liu, S., Deng, L., Wang, D., Xiao, H., Liu, Y., & Gao, Z. (2017). Pulsed vacuum drying of wolfberry: Effects of infrared radiation heating and electronic panel contact heating methods on drying kinetics, color profile, and volatile compounds. Drying Technology, 35(11), 1312–1326.

    Article  Google Scholar 

  • Zhang, C. H., Huang, L. X., Wang, C. P., & Mujumdar, A. S. (2010). Experimental and numerical investigation of spray-drying parameters on the dried powder properties of Ginkgo biloba seeds. Drying Technology, 28(3), 380–388.

    Article  CAS  Google Scholar 

  • Zhang, Z., Liu, Z., Liu, C., Li, D., Jiang, N., & Liu, C. (2016). Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Drying Technology, 34(15), 1791–1800.

    Article  Google Scholar 

  • Zheng, W., Li, X., Zhang, L., Zhang, Y., Lu, X., & Tian, J. (2015). Improved metabolites of pharmaceutical ingredient grade ginkgo biloba and the correlated proteomics analysis. Proteomics, 15(11), 1868–1883.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Xu, R., Zhang, B., Pei, S., Liu, Q., Ramaswamy, H. S., & Wang, S. (2018). Radio frequency-vacuum drying of kiwifruits: kinetics, uniformity, and product quality. Food and Bioprocess Technology, 11(11), 2094–2109.

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (31601578), the Natural Science Foundation of Jiangsu Province (BK20160504), and Jiangsu University Advanced Talent Research Start-up Fund (15JDG060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yu Tian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, JW., Cai, JR. & Tian, XY. Crust Formation and Microstructural Changes of Gingko Biloba Seeds During Drying. Food Bioprocess Technol 12, 1041–1051 (2019). https://doi.org/10.1007/s11947-019-02280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02280-4

Keywords

Navigation