Screening of Wine Extractable Total Phenolic and Ellagitannin Contents in Revalorized Cooperage By-products: Evaluation by Micro-NIRS Technology

  • Berta Baca-Bocanegra
  • Julio Nogales-Bueno
  • Ignacio García-Estévez
  • María Teresa Escribano-Bailón
  • José Miguel Hernández-HierroEmail author
  • Francisco José Heredia
Original Paper


Determining phenolic compounds of wood and its extractability to the hydroalcoholic medium is important in the oenological industry. The method proposed in this study copes with this issue in an in situ, non-destructive, and fast way. For this purpose, a number of oak by-product samples spectrally representative have been selected. Selected spectral data have been correlated with oak wood extractable polyphenols (extractable total phenolic content and extractable ellagitannin content) by modified partial least squares regression (MPLS) obtaining coefficients of determination (RSQ) greater than 0.9 and standard errors of prediction (SEP) between 13.68 and 23.51% for all parameters evaluated. The obtained results are comparable with those obtained using bench-top devices and present the advantage of its eventual friendly use out of lab. Development of applicable models in situ will allow a greater versatility and efficiency for the decision-making in the winemaking process on the adequacy and/or dosage of these by-products according to the requirements of the wine. The use of cooperage by-products as the source of copigments for wine leads to a sustainable and competitive cooperage industry, through waste reduction and by-product valorization.


Red wine Oak by-product Phenolic compounds Ellagitannin Micro-NIRS 



The authors thank the technical staff of the Biology Service (Servicios Generales de Investigación (SGI), Universidad de Sevilla). The authors also thank Tonelería Salas S.L. (Bollulos Par del Condado, Huelva, Spain) for supplying the cooperage by-product samples.

Funding Information

This work is financially supported by the Spanish Ministerio de Economía y Competitividad under the project AGL2017-84793-C2. B. Baca-Bocanegra and J. Nogales-Bueno received funding from the Universidad de Sevilla under the predoctoral grant (VPPI-II.2) and postdoctoral grant (VPPI-II.4), respectively. I. García-Estévez received funding from the FEDER-Interreg España-Portugal Programme (project ref. 0377_IBERPHENOL_6_E) under his postdoctoral grant.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11947_2018_2225_MOESM1_ESM.docx (94 kb)
ESM 1 (DOCX 93 kb)


  1. Abu Izneid, B., Fadhel, M. I., Al-Kharazi, T., Ali, M., & Miloud, S. (2014). Design and develop a nondestructive infrared spectroscopy instrument for assessment of mango (Mangifera indica) quality. Journal of Food Science and Technology-Mysore, 51(11), 3244–3252.CrossRefGoogle Scholar
  2. Antonucci, F., Pallottino, F., Paglia, G., Palma, A., D’Aquino, S., & Menesatti, P. (2011). Non-destructive estimation of mandarin maturity status through portable Vis-NIR spectrophotometer. Food and Bioprocess Technology, 4(5), 809-813Google Scholar
  3. Baca-Bocanegra, B., Nogales-Bueno, J., Hernández-Hierro, J. M., & Heredia, F. J. (2018). Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging. Food Chemistry, 244, 206–212.CrossRefGoogle Scholar
  4. Balík, J., Híc, P., Kulichová, J., Novotná, P., Tříska, J., Vrchotová, N., et al. (2017). Musts with increased lignan content through addition of lignan extracts. Food and Bioprocess Technology, 10(7), 1367–1373.CrossRefGoogle Scholar
  5. Boulton, R. (2001). The copigmentation of anthocyanins and its role in the color of red wines. A critical review. American Journal of Enology and Viticulture, 52, 67–87.Google Scholar
  6. Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. Chichester, West Sussex, England: J. Wiley.Google Scholar
  7. Camps, C., Simone, C., & Gilli, C. (2012). Assessment of tomato quality using portable NIR spectroscopy and PLSR with wavelengths selection. Acta Horticulturae, 936, 437–442.CrossRefGoogle Scholar
  8. Cozzolino, D., Dambergs, R. G., Janik, L., Cynkar, W. U., & Gishen, M. (2006). Analysis of grapes and wine by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 14(5), 279–289.CrossRefGoogle Scholar
  9. Chassaing, S., Lefeuvre, D., Jacquet, R., Jourdes, M., Ducasse, L., Galland, S., et al. (2010). Physicochemical studies of new anthocyano-ellagitannin hybrid pigments: about the origin of the influence of oak C-glycosidic ellagitannins on wine color. European Journal of Organic Chemistry, 1, 55–63.CrossRefGoogle Scholar
  10. Chira, K., & Teissedre, P.-L. (2013). Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: behaviour during storage. Food Chemistry, 140(1-2), 168–177.CrossRefGoogle Scholar
  11. Del Álamo, M., Nevares, I., Gallego, L., Martin, C., & Merino, S. (2008). Aging markers from bottled red wine aged with chips, staves and barrels. Analytica Chimica Acta, 621(1), 86–99.CrossRefGoogle Scholar
  12. Dhanoa, M. S., Lister, S. J. and Barnes, R. J. (1995). On the scales associated with near-infrared reflectance difference spectra. Applied Spectroscopy 49: 765–772.Google Scholar
  13. Doussot, F., De Jéso, B., Quideau, S., & Pardon, P. (2002). Extractives content in cooperage oak wood during natural seasoning and toasting; influence of tree species, geographic location, and single-tree effects. Journal of Agricultural and Food Chemistry, 50, 5955–5961.CrossRefGoogle Scholar
  14. Escribano-Bailón, M. T., & Santos-Buelga, C. (2012). Anthocyanin copigmentation - evaluation, mechanisms and implications for the colour of red wines. [Article]. Current Organic Chemistry, 16(6), 715–723.CrossRefGoogle Scholar
  15. Ferrer-Gallego, R., Hernández-Hierro, J. M., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2010). Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds. Talanta, 82(5), 1778–1783.CrossRefGoogle Scholar
  16. Ferrer-Gallego, R., Hernández-Hierro, J. M., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2011). Determination of phenolic compounds of grape skins during ripening by NIR spectroscopy. LWT - Food Science and Technology, 44(4), 847–853.CrossRefGoogle Scholar
  17. García-Estévez, I., Alcalde-Eon, C., Le Grottaglie, L., Rivas-Gonzalo, J. C., & Escribano-Bailón, M. T. (2015). Understanding the ellagitannin extraction process from oak wood. Tetrahedron, 71(20), 3089–3094.CrossRefGoogle Scholar
  18. García-Estévez, I., Alcalde-Eon, C., María Martínez-Gil, A., Rivas-Gonzalo, J. C., Teresa Escribano-Bailón, M., Nevares, I., et al. (2017). An approach to the study of the interactions between ellagitannins and oxygen during oak wood aging. Journal of Agricultural and Food Chemistry, 65(31), 6369–6378.CrossRefGoogle Scholar
  19. García-Estévez, I., Escribano-Bailón, M. T., Rivas-Gonzalo, J. C., & Alcalde-Eon, C. (2010). Development of a fractionation method for the detection and identification of oak ellagitannins in red wines. Analytica Chimica Acta, 660(1-2), 171–176.CrossRefGoogle Scholar
  20. García-Estévez, I., Escribano-Bailón, M. T., Rivas-Gonzalo, J. C., & Alcalde-Eon, C. (2012). Validation of a mass spectrometry method to quantify oak ellagitannins in wine samples. [Article]. Journal of Agricultural and Food Chemistry, 60(6), 1373–1379.CrossRefGoogle Scholar
  21. García-Estévez, I., Gavara, R., Alcalde-Eon, C., Rivas-Gonzalo, J. C., Quideau, S., Escribano-Bailón, M. T., et al. (2013a). Thermodynamic and kinetic properties of a new myrtillin–vescalagin hybrid pigment. Journal of Agricultural and Food Chemistry, 61(47), 11569–11578.CrossRefGoogle Scholar
  22. García-Estévez, I., Jacquet, R., Alcalde-Eon, C., Rivas-Gonzalo, J. C., Escribano-Bailón, M. T., & Quideau, S. (2013b). Hemisynthesis and structural and chromatic characterization of delphinidin 3-O-glucoside-vescalagin hybrid pigments. Journal of Agricultural and Food Chemistry, 61(47), 11560–11568.CrossRefGoogle Scholar
  23. Geladi, P., MacDougall, D. and Martens, H. (1985). Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 39, 491–500. Google Scholar
  24. Giordanengo, T., Charpentier, J. P., Boizot, N., Roussel, S., Roger, J. M., Chaix, G., et al. (2009). Oakscan: procédé de mesure rapide et non destructif des polyphénols du bois de chêne de tonnellerie. Revue Francaise d'Oenologie, 10–15.Google Scholar
  25. González-Caballero, V., Sánchez, M.-T., Fernández-Novales, J., López, M.-I., & Pérez-Marín, D. (2012). On-vine monitoring of grape ripening using near-infrared spectroscopy. Food Analytical Methods, 5(6), 1377–1385.CrossRefGoogle Scholar
  26. Guidetti, R., Beghi, R., & Bodria, L. (2010). Evaluation of frape quality parameters by a simple VIS/NIR system. Transactions of the ASABE, 53(2), 477–484.CrossRefGoogle Scholar
  27. Hernández-Hierro, J. M., Nogales-Bueno, J., Rodríguez-Pulido, F. J., & Heredia, F. J. (2013). Feasibility study on the use of near-infrared hyperspectral imaging for the screening of anthocyanins in intact grapes during ripening. Journal of Agricultural and Food Chemistry, 61(41), 9804–9809.CrossRefGoogle Scholar
  28. Jourdes, M., Michel, J., Saucier, C., Quideau, S., & Teissedre, P. L. (2011). Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Analytical and Bioanalytical Chemistry, 401(5), 1531–1539.CrossRefGoogle Scholar
  29. Kemps, B., Leon, L., Best, S., De Baerdemaeker, J., & De Ketelaere, B. (2010). Assessment of the quality parameters in grapes using VIS/NIR spectroscopy. Biosystems Engineering, 105(4), 507-513Google Scholar
  30. Larrain, M., Guesalaga, A. R., & Agosin, E. (2008). A multipurpose portable instrument for determining ripeness in wine grapes using NIR spectroscopy. IEEE Transactions on Instrumentation and Measurement, 57(2), 294–302.CrossRefGoogle Scholar
  31. Masson, G., Moutounet, M., & Puech, J. L. (1995). Ellagitannin content of oak wood as a function of species and of sampling position in the tree. American Journal of Enology and Viticulture, 46(2), 262–268.Google Scholar
  32. Michel, J., Jourdes, M., Le Floch, A., Giordanengo, T., Mourey, N., & Teissedre, P. L. (2013). Influence of wood barrels classified by NIRS on the ellagitannin content/composition and on the organoleptic properties of wine. Journal of Agricultural and Food Chemistry, 61(46), 11109–11118.CrossRefGoogle Scholar
  33. Nevares, I., Del Alamo, M., Cárcel, L. M., Crespo, R., Martin, C., & Gallego, L. (2008). Measure the dissolved oxygen consumed by red wines in aging tanks. Food and Bioprocess Technology, 2(3), 328–336.CrossRefGoogle Scholar
  34. Nogales-Bueno, J., Baca-Bocanegra, B., Rodríguez-Pulido, F. J., Heredia, F. J., & Hernández-Hierro, J. M. (2015). Use of near infrared hyperspectral tools for the screening of extractable polyphenols in red grape skins. Food Chemistry, 172, 559–564.CrossRefGoogle Scholar
  35. Osborne, B. G., Fearn, T., Hindle, P. T., & Osborne, B. G. (1993). Practical NIR spectroscopy with applications in food and beverage analysis. Harlow, Essex. In England. New York: Longman Scientific & Technical ; Wiley.Google Scholar
  36. Páscoa, R. N. M. J., Machado, S., Magalhães, L. M., & Lopes, J. A. (2014). Value adding to red grape pomace exploiting eco-friendly FT-NIR spectroscopy technique. Food and Bioprocess Technology, 8(4), 865–874.CrossRefGoogle Scholar
  37. Peng, S., Scalbert, A., & Monties, B. (1991). Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry, 30(3), 775–778.CrossRefGoogle Scholar
  38. Ribéreau-Gayon, P., Dubourdieu, D., Doneche, B., Lonvaud, A., Glories, Y., Maujean, A., et al. (2006). Handbook of enology, the microbiology of wine and vinifications (Vol. v. 1). West Sussex, England: J. Wiley & Sons.Google Scholar
  39. Rodriguez-Pulido, F. J., Hernández-Hierro, J. M., Nogales-Bueno, J., Gordillo, B., Gonzalez-Miret, M. L., & Heredia, F. J. (2014). A novel method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta, 122, 145–150.CrossRefGoogle Scholar
  40. Shenk, J. S., & Westerhaus, M. O. (1995). Routine operation,calibration, development and network system management manual. Silver Spring, Maryland: NIRSystems.Google Scholar
  41. Siesler, H. W., Ozaky, Y., Kawata, S., & Heise, H. M. (2002). Near infrared spectroscopy: principles, instruments, applications. Weinheim, Germany: Wiley-VCH.Google Scholar
  42. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.Google Scholar
  43. Snakkers, G., Nepveu, G., Guilley, E., & Cantagrel, R. (2000). Geographic, silvicultural and individual variabilities of extractive content for French sessile oaks (Quercus petraea Liebl.): polyphenols, octalactones and volatile phenols. Annals of Forest Science, 57(3), 251–260.CrossRefGoogle Scholar
  44. Viriot, C., Scalbert, A., Hervé du Penhoat, C. L. M., & Moutounet, M. (1994). Ellagitannins in woods of sessile oak and sweet chestnut dimerization and hydrolysis during wood ageing. Phytochemistry, 36(5), 1253–1260.CrossRefGoogle Scholar
  45. Vivas, N., & Glories, Y. (1996). Role of oak wood ellagitannins in the oxidation process of red wines during aging. American Journal of Enology and Viticulture, 47(1), 103–107.Google Scholar
  46. Zahri, S., Moubarik, A., Charrier, F., Chaix, G., Bailleres, H., Nepveu, G., et al. (2008). Quantitative assessment of total phenol contents of European oak (Quercus petraea and Quercus robur) by diffuse reflectance NIR spectroscopy on solid wood surfaces. Holzforschung, 62(6), 679–687.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Berta Baca-Bocanegra
    • 1
  • Julio Nogales-Bueno
    • 1
  • Ignacio García-Estévez
    • 2
  • María Teresa Escribano-Bailón
    • 2
  • José Miguel Hernández-Hierro
    • 1
    Email author
  • Francisco José Heredia
    • 1
  1. 1.Food Colour and Quality Laboratory, Á. Nutrición y Bromatología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
  2. 2.Grupo de Investigación en Polifenoles (GIP), Unidad de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de SalamancaSalamancaSpain

Personalised recommendations