Skip to main content
Log in

Use of Residual Yeast Cell Wall for New Biobased Materials Production: Effect of Plasticization on Film Properties

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The use of renewable resources to develop food contact materials, such as proteins or polysaccharides, and the use of industrial residues for alternative applications are trending topics for researchers and the industry. Yeast cell wall (YCW) is a very rich waste from the yeast extract industry. Due to this, the aim of this work is to develop new biodegradable films based on residual YCW and the study of the effect of plasticization on films properties. Residual YCW was used as base matrix and different concentrations of glycerol (0, 15, 25 and 35 wt%) were tested to obtain casted films. Homogeneous and yellow-brownish films, which allow seeing through them, were obtained from the YCW. Total soluble matter demonstrated that glycerol enhanced solubility of films but glycerol was retained in the polymer matrix. TGA studies indicated that YCW films exhibited substantial degradation at temperatures above 180 °C. FTIR spectra of the casted films were representative of yeast cell wall material and SEM photographs showed that cell wall maintained their shape after film formation. As expected, Young’s modulus and tensile strength values were decreased with the increasing amount of glycerol. However, elongation at break was not increased further with higher concentration of plasticizer and the addition of 15 wt% of glycerol seemed to be enough to improve mechanical properties. The linear increment of water vapour permeability with glycerol concentration was produced by the increase in water solubility in the film. Therefore, based on solubility in water, mechanical, and barrier properties, it is possible to propose yeast cells residues as film-forming material for biodegradable film developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abugoch, L. E., Tapia, C., Villamán, M. C., Yazdani-Pedram, M., & Díaz-Dosque, M. (2011). Characterization of quinoa protein–chitosan blend edible films. Food Hydrocolloids, 25(5), 879–886.

    Article  CAS  Google Scholar 

  • Ahmed, M. K., McLeod, M. P., Nézivar, J., & Giuliani, A. W. (2010). Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic diethylene glycol (DEG) contaminant in glycerin based cough syrup. Spectroscopy, 24(6), 601–608.

    Article  Google Scholar 

  • Al-Hassan, A. A., & Norziah, M. H. (2012). Starch-gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108–117.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Peltzer, M., Garrogoz, M. C., & Jimenez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486–494.

    Article  CAS  Google Scholar 

  • Arrieta, M. P., Peltzer, M. P., López, J., Garrigoz, M. C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94–101.

    Article  CAS  Google Scholar 

  • ASTM-E96 (2016). Standard test methods for water vapor transmission of materials. West Conshohocken: ASTM International.

    Google Scholar 

  • Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835–864.

    Article  CAS  PubMed  Google Scholar 

  • Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972–978.

    Article  CAS  Google Scholar 

  • Bishop, J. R. P., Nelson, G., & Lamb, J. (1998). Microencapsulation in yeast cells. Journal of Microencapsulation, 15(6), 761–773.

    Article  CAS  PubMed  Google Scholar 

  • Blahovec, J., Hejlová, A., Čopíková, J., & Novák, M. (2011). Tensile properties of microbial β-glucan films. Polymer Engineering & Science, 51(12), 2564–2570.

    Article  CAS  Google Scholar 

  • Bzducha-Wróbel, A., Błażejak, S., Kawarska, A., Stasiak-Różańska, L., Gientka, I., & Majewska, E. (2014). Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules, 19(12), 20941–20961.

    Article  CAS  PubMed  Google Scholar 

  • Chinnan, M. S., & Park, H. J. (1995). Effect of plasticizer level and temperature on water vapor transmission of cellulose-based edible films. Journal of Food Process Engineering, 18(4), 417–429.

    Article  Google Scholar 

  • Coupland, J. N., Shaw, N. B., Monahan, F. J., O'Riordan, D. E., & O'Sullivan, M. (2000). Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. Journal of Food Engineering, 43(1), 25–30.

    Article  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion. Oxford: Oxford Clarendon Press.

    Google Scholar 

  • Cuq, B., Gontard, N., Cuq, J. L., & Guilbert, S. (1997). Selected functional properties of fish myofibrillar protein based films as affected by hydrophilic plasticizers. Journal of Agriculture Food Chemistry, 45(3), 622–626.

    Article  CAS  Google Scholar 

  • Debeaufort, F., Voilley, A., & Meares, P. (1994). Water vapor permeability and diffusivity through methylcellulose edible films. Journal of Membrane Science, 91(1–2), 125–133.

    Article  CAS  Google Scholar 

  • Delgado, J. F., Sceni, P., Peltzer, M. A., Salvay, A. G., de la Osa, O., & Wagner, J. R. (2016). Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae. Innovative Food Science & Emerging Technologies, 36, 83–91.

    Article  CAS  Google Scholar 

  • Delgado, J. F., Peltzer, M. A., Wagner, J. R., & Salvay, A. G. (2018). Hydration and water vapour transport properties in yeast biomass based films: a study of plasticizer content and thickness effects. European Polymer Journal, 99, 9–17.

    Article  CAS  Google Scholar 

  • Farahnaky, A., Saberi, B., & Majzoobi, M. (2013). Effect of glycerol on physical and mechanical properties of wheat starch edible films. Journal of Texture Studies, 44(3), 176–186.

    Article  Google Scholar 

  • Gao, C., Stading, M., Wellner, N., Parker, M. L., Noel, T. R., Mills, E. N., & Belton, P. S. (2006). Plasticization of a protein-based film by glycerol: a spectroscopic, mechanical, and thermal study. Journal of Agricultural and Food Chemistry, 54(13), 4611–4616.

    Article  CAS  PubMed  Google Scholar 

  • García, M. A., Martino, M. N., & Zaritzky, N. E. (2000). Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science, 65(6), 941–944.

    Article  Google Scholar 

  • Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering, 21(4), 395–409.

    Article  Google Scholar 

  • Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethylcellulose. Industrial Crops and Products, 33(1), 229–235.

    Article  CAS  Google Scholar 

  • Guerrero, P., Retegi, A., Gabilondo, A., & de la Caba, K. (2010). Mechanical and thermal properties of soy protein films processed by casting and compression. Journal of Food Engineering, 100(1), 145–151.

    Article  CAS  Google Scholar 

  • Guggenheim, E. A. (1966). Applications of statistical mechanics (pp. 186–206). Oxford: Claredon Press.

    Google Scholar 

  • Han, Y., Li, K., Chen, H., & Li, J. (2017). Properties of soy protein isolate biopolymer film modified by graphene. Polymers, 9(8), 312–323.

    Article  CAS  Google Scholar 

  • Hernandez-Izquierdo, V. M., & Krochta, J. M. (2008). Thermoplastic processing of proteins for film formation—a review. Journal of Food Science, 73(2), 30–39.

    Article  CAS  Google Scholar 

  • Hromádková, Z., Ebringerová, A., Sasinková, V., Šandula, J., Hřı́balová, V., & Omelková, J. (2003). Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1→3)-β-d-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers, 51(1), 9–15.

    Article  Google Scholar 

  • Hu, G., Chen, J., & Gao, J. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76(2), 291–298.

    Article  CAS  Google Scholar 

  • Jangchud, A., & Chinnan, M. S. (1999). Properties of peanut protein film: sorption isotherm and plasticizer effect. LWT - Food Science and Technology, 32(2), 89–94.

    Article  CAS  Google Scholar 

  • Jost, V., & Stramm, C. (2016). Influence of plasticizers on the mechanical and barrier properties of cast biopolymer films. Journal of Applied Polymer Science, 133(2), 42513 (1-9).

    Article  CAS  Google Scholar 

  • Kasai, T., Eguchi, T., Ishiwaki, N., Kaneshige, J., Ozeki, T., & Yuasa, H. (2000). Application of acid-treated yeast cell wall (AYC) as a pharmaceutical additive: I. AYC as a novel coating material. International Journal of Pharmaceutics, 204(1-2), 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22(3), 373–386.

    Article  CAS  Google Scholar 

  • Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenges. Journal of Bacteriology, 180, 3735–3740.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283–289.

    Article  CAS  Google Scholar 

  • McHugh, T. H., Avenabustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films—modified procedure for water-vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.

    Article  CAS  Google Scholar 

  • Moine, C., Gloaguen, V., Gloaguen, J. M., Granet, R., & Krausz, P. (2004). Chemical valorization of forest and agricultural by-products. Obtention, chemical characteristics, and mechanical behavior of a novel family of hydrophobic films. Journal of Environmental Science and Health, Part B, 39(4), 627–640.

    Article  CAS  Google Scholar 

  • Morgan, K. R. (2002). β-glucan products and extraction process from cereals. US patent 0192770 A1.

  • Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82–87.

    Article  CAS  Google Scholar 

  • Novák, M., Synytsya, A., Gedeon, O., Slepička, P., Procházka, V., Synytsya, A., Blahovec, J., Hejlová, A., & Čopíková, J. (2012). Yeast β (1-3),(1-6)-d-glucan films: preparation and characterization of some structural and physical properties. Carbohydrate Polymers, 87(4), 2496–2504.

    Article  CAS  Google Scholar 

  • Pastor Navarro, C. (2010). Recubrimientos comestibles a base de hidroxipropilmetilcelulosa: caracterización y aplicación. Riunet. Universitat Politècnica de València, Valencia.

  • Peltzer, M. A., Salvay, A. G., Delgado, J. F., & Wagner, J. R. (2017). Use of edible films and coatings for functional foods developments: a review. In D. L. Nelson (Ed.), Functional foods: sources, health effects and future perspectives, chapter: 1. Hauppauge: Nova Publishing.

    Google Scholar 

  • Peltzer, M., Delgado, J. F., Salvay, A. G., & Wagner, J. R. (2018). β-glucan, a promising polysaccharide for bio-based films developments for food contact materials and medical applications. Current Organic Chemistry, 22(12), 1249–1254.

    Article  CAS  Google Scholar 

  • Razzaq, H. A. A., Pezzuto, M., Santagata, G., Silvestre, C., Cimmino, S., Larsen, N., & Duraccio, D. (2016). Barley β-glucan-protein based bioplastic film with enhanced physicochemical properties for packaging. Food Hydrocolloids, 58, 276–283.

    Article  CAS  Google Scholar 

  • Rocha Plácido Moore, G., Martelli, S. M., Gandolfo, C., Do Amaral Sobral, P. J., & Borges Laurindo, J. (2006). Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloids, 20(7), 975–982.

    Article  CAS  Google Scholar 

  • Rogers, C. E. (1985). Permeation of gases and vapours in polymers. Dordrecht: Springer.

    Book  Google Scholar 

  • Roy, S., Gennadios, A., Weller, C. L., & Testin, R. F. (2000). Water vapor transport parameters of a cast wheat gluten film. Industrial Crops and Products, 11(1), 43–50.

    Article  CAS  Google Scholar 

  • Salvay, A. G., Colombo, M. F., & Grigera, J. R. (2003). Hydration effects on the structural properties and haem–haem interaction in haemoglobin. Physical Chemistry Chemical Physics, 5(1), 192–197.

    Article  CAS  Google Scholar 

  • Šandula, J., Kogan, G., Kačuráková, M., & Machová, E. (1999). Microbial (1→3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydrate Polymers, 38(3), 247–253.

    Article  Google Scholar 

  • Sceni, P., Palazolo, G. G., Vasallo, M. C., Puppo, M. C., Otero, M. A., & Wagner, J. R. (2009). Thermal and surface behavior of yeast protein fractions from Saccharomyces cerevisiae. LWT Food Science and Technology, 42(6), 1098–1106.

    Article  CAS  Google Scholar 

  • Shankar, V. (1981). Influence of interfacial resistance on kinetics of sorption. Polymer, 22(6), 748–752.

    Article  CAS  Google Scholar 

  • Skendi, A., Biliaderis, C. G., Lazaridou, A., & Izydorczyk, M. S. (2003). Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of Cereal Science, 38(1), 15–31.

    Article  CAS  Google Scholar 

  • Song, F., Tang, D.-L., Wang, X.-L., & Wang, Y.-Z. (2011). Biodegradable soy protein isolate-based materials: a review. Biomacromolecules, 12(10), 3369–3380.

    Article  CAS  PubMed  Google Scholar 

  • Su, J. F., Huang, Z., Yuan, X. Y., Wang, X. Y., & Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1), 145–153.

    Article  CAS  Google Scholar 

  • Tanada-Palmu, P. S., & Grosso, C. R. F. (2003). Development and characterization of edible films based on gluten from semi-hard and soft Brazilian wheat flours (development of films based on gluten from wheat flours). Ciência e Tecnologia de Alimentos, 23(2), 264–269.

    Article  CAS  Google Scholar 

  • Vanin, F. M., Sobral, P. J. A., Menegalli, F. C., Carvalho, R. A., & Habitante, A. M. Q. B. (2005). Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocolloids, 19(5), 899–907.

    Article  CAS  Google Scholar 

  • Wu, C., Chu, B., Kuang, L., Meng, B., Wang, X., Tang, S., & Wu, C. (2013). Synthesis of β-1,3-glucan esters showing nanosphere formation. Carbohydrate Polymers, 98(1), 807–812.

    Article  CAS  PubMed  Google Scholar 

  • Zechner-Krpan, V., Petravić-Tominac, V., Gospodarić, I., Sajli, L., Đaković, S., & Filipović-Grčić, J. (2010). Characterization of β-glucans isolated from brewer’s yeast and dried by different methods. Food Technology and Biotechnology, 48(2), 189–197.

    CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from Universidad Nacional de Quilmes (UNQ, Argentina) through R&D program PUNQ 53/1037 and to the Agencia Nacional de Promoción Científica y Tecnológica (Argentina) through the PICT-2015-3150 (PRESTAMO BID 3497 OC-AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Peltzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peltzer, M.A., Salvay, A.G., Delgado, J.F. et al. Use of Residual Yeast Cell Wall for New Biobased Materials Production: Effect of Plasticization on Film Properties. Food Bioprocess Technol 11, 1995–2007 (2018). https://doi.org/10.1007/s11947-018-2156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2156-8

Keywords

Navigation