Abstract
Banana passionfruit is an edible fruit widespread in the Andean highlands of Colombia and Ecuador, which has a high content of carotenoids. The microencapsulation process is used to improve the stability of this bioactive compound. The encapsulation agents, core/wall material ratio, and operational parameters influence the efficiency of the process. In this study, Maltodextrin (MD) and Gum Arabic (GA) were used as wall materials to assess the influence of inlet temperature and different MD:GA and core/encapsulating material (Core:EM) ratios on moisture, water activity, color, particle size, process yield (PY), encapsulation efficiency (EE), and total carotenoid content (TCC) of microencapsulated banana passionfruit pulp (MBP) by spray-drying. The lowest moisture (1.12 ± 0.01%) of MBP was at a temperature of 150 °C; the water activity (Aw) for all samples was less than 0.4, and the Hue angle indicated a coloration between orange and yellow. The increase in temperature produced an increase in the particle size. However, the MBP showed a uniform particle diameter (1.25 ± 0.21 μm). The treatment T2A1B2 (T = 150 °C, Core:EM = 1:1, MD:GA = 4:6) showed the highest EE (50.79 ± 0.29%) and the best PY (60.84 ± 0.07%). The stability of MBP was carried out at temperatures of 4, 20, and 40 °C. The predicted shelf life can be up to 215 days on storage at 4 °C. The encapsulation improved the stability of TCC in banana passionfruit pulp. Therefore, the MBP can be considered as a potential ingredient for use in functional beverages.
Similar content being viewed by others
References
Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6(6), 1561–1569. https://doi.org/10.1007/s11947-012-0796-7.
Akhavan Mahdavi, S., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011.
Al-Ismail, K., El-Dijani, L., Al-Khatib, H., & Saleh, M. (2016). Effect of microencapsulation of vitamin C with gum Arabic, whey protein isolate and some blends on its stability. Journal of Scientific & Industrial Research, 75(March), 176–180.
Alves, S. F., Borges, L. L., dos Santos, T. O., de Paula, J. R., Conceição, E. C., & Bara, M. T. F. (2014). Microencapsulation of essential oil from fruits of Pterodon emarginatus using gum Arabic and maltodextrin as wall materials: composition and stability. Drying Technology, 32(1), 96–105. https://doi.org/10.1080/07373937.2013.816315.
AOAC International. (2007). Association of Official Analytical Chemist. Official methods of analysis, 18th edition. Virginia.
Barbosa, M. I. M. J., Borsarelli, C. D., & Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 38(8–9), 989–994. https://doi.org/10.1016/j.foodres.2005.02.018.
Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technology, 31(11), 1274–1283. https://doi.org/10.1080/07373937.2013.788509.
Bengtsson, A., Namutebi, A., Alminger, M. L., & Svanberg, U. (2008). Effects of various traditional processing methods on the all-trans-β-carotene content of orange-fleshed sweet potato. Journal of Food Composition and Analysis, 21(2), 134–143. https://doi.org/10.1016/j.jfca.2007.09.006.
Bernal, J. E., & Díaz, C. A. (2005). Tecnología para el cultivo de la curuba. (Litomadrid, Ed.) (Primera.). Medellín.
Brown, M. J., Ferruzzi, M. G., Nguyen, M. L., Cooper, D. A., Eldridge, A. L., Schwartz, S. J., & White, W. S. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. American Journal of Clinical Nutrition, 80(2), 396–403.
Burin, V. M., Rossa, P. N., Ferreira-Lima, N. E., Hillmann, M. C. R., & Boirdignon-Luiz, M. T. (2011). Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science & Technology, 46(1), 186–193. https://doi.org/10.1111/j.1365-2621.2010.02486.x.
Bustos-Garza, C., Yáñez-Fernández, J., & Barragán-Huerta, B. E. (2013). Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Research International, 54(1), 641–649. https://doi.org/10.1016/j.foodres.2013.07.061.
Cano-Higuita, D. M., Malacrida, C. R., & Telis, V. R. N. (2015). Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum Arabic and modified starch. Journal of Food Processing and Preservation, 39(6), 2049–2060. https://doi.org/10.1111/jfpp.12448.
Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033.
Castellani, O., Guibert, D., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2010). Hydrocolloids with emulsifying capacity. Part 1 - emulsifying properties and interfacial characteristics of conventional (Acacia senegal (L.) Willd. var. senegal) and matured (Acacia (sen) SUPER GUM???) Acacia senegal. Food Hydrocolloids, 24(2–3), 193–199. https://doi.org/10.1016/j.foodhyd.2009.09.005.
Chaparro, R. D. C., Maldonado, C., Maria, E., Franco, L. M. C., & Urango, M. L. A. (2015). CARACTERISTICAS NUTRICIONALES Y ANTIOXIDANTES DE LA FRUTA CURUBA LARGA (Passiflora mollisima Bailey) NUTRITIONAL AND ANTIOXIDANT CHARACTERISTICS OF BANANA PASSION FRUIT (Passiflora mollisima Bailey) ANTIOXIDANTES DA FRUTA CURUBA LONGA (Passiflora mol.). Biotecnología en el Sector Agropecuario y Agroindustrial, 13(1), 120–128.
Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016). Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chemistry, 201, 14–22. https://doi.org/10.1016/j.foodchem.2016.01.051.
Cooperstone, J. L., & Schwartz, S. J. (2016). Recent insights into health benefits of carotenoids. Handbook on natural pigments in food and beverages: Industrial applications for improving food color. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100371-8.00020-8.
Coronel-Aguilera, C. P., & San Martín-González, M. F. (2015). Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT - Food Science and Technology, 62(1, Part 1), 187–193. https://doi.org/10.1016/j.lwt.2014.12.036.
Da Silva, P., Fries, L., Menezes, C., Holkem, A., Schwan, C., Wigmann, É., et al. (2014). Microencapsulation: concepts, mechanisms, methods and some applications in food technology, 1304–1311.
De Marco, R., Vieira, A. M. S., Ugri, M. C. A., Monteiro, A. R. G., & Bergamasco, R. D. C. (2013). Microencapsulation of annatto seed extract: stability and application. Chemical Engineering Transactions, 32, 1777–1782. https://doi.org/10.3303/CET1332297.
Di Battista, C. A., Constenla, D., Ramírez-Rigo, M. V., & Piña, J. (2015). The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technology, 286, 193–201. https://doi.org/10.1016/j.powtec.2015.08.016.
Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols—a review. Trends in Food Science & Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003.
Fernandes, L. P., Candido, R. C., & Oliveira, W. P. (2012). Spray drying microencapsulation of Lippia sidoides extracts in carbohydrate blends. Food and Bioproducts Processing, 90(3), 425–432. https://doi.org/10.1016/j.fbp.2011.12.001.
Fernandes, R. V. d. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101, 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083.
Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488. https://doi.org/10.3390/nu6020466.
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004.
Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152. https://doi.org/10.1016/j.foodchem.2016.08.022.
Gil, M., Restrepo, A., Millán, L., Alzate, L., & Rojano, B. (2014). Microencapsulation of banana passion fruit (Passiflora tripartita Var. Mollissima): a new alternative as a natural additive as antioxidant. Food and Nutrition Sciences, 05(08), 671–682. https://doi.org/10.4236/fns.2014.58078.
ISO. (2017). ISO 22412:2017 Particle size analysis — Dynamic light scattering (DLS) (Vol. Second Edi).
Jafari, S. M., assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835. https://doi.org/10.1080/07373930802135972.
Janiszewska, E., & Wáodarczyk, J. (2013). Influence of spray drying conditions on beetroot pigments retention after microencapsulation process. Acta Agrophysica, 20(2), 343–356.
Kanakdande, D., Bhosale, R., & Singhal, R. S. (2007). Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydrate Polymers, 67(4), 536–541. https://doi.org/10.1016/j.carbpol.2006.06.023.
Kandansamy, K., & Somasundaram, P. D. (2012). Microencapsulation of colors by spray drying—a review. International Journal of Food Engineering, 8(2). https://doi.org/10.1515/1556-3758.2647.
Krishnan, S., Kshirsagar, A. C., & Singhal, R. S. (2005). The use of gum arabic and modified starch in the microencapsulation of a food flavoring agent. Carbohydrate Polymers, 62(4), 309–315. https://doi.org/10.1016/j.carbpol.2005.03.020.
León, D., & Riveros, J. (2014). EXTRACCIÓN Y CARACTERIZACIÓN · QUÍMICA DE LAS PECTINAS DE LAS CÁSCARAS DEL MARA CUY Á AMARILLO (Passiflora edu/is, Var Flavicarpa degener), GRANADILLA (Passiflora ligularis Juss) Y TUMBO SERRANO (Passiflora mo/lísima H.B.K. Bailey). Universidad Nacional del Callao.
Lim, A. S. L., Burdikova, Z., Sheehan, D. J., & Roos, Y. H. (2016). Carotenoid stability in high total solid spray dried emulsions with gum Arabic layered interface and trehalose-WPI composites as wall materials. Innovative Food Science and Emerging Technologies, 34, 310–319. https://doi.org/10.1016/j.ifset.2016.03.001.
Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21(5–6), 928–935. https://doi.org/10.1016/j.foodhyd.2006.10.011.
Man, D. (2004). Caducidad del los alimentos. (A. Editorial, Ed.) (Primera.). Madrid.
Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocolloids, 22(7), 1212–1223. https://doi.org/10.1016/j.foodhyd.2007.06.011.
Montenegro, M. A., Bolero, M. L., Valle, L., & Borsarelli, C. D. (2012). Gum Arabic: more than an edible emulsifier. Products and Applications of Biopolymers, 3–26. https://doi.org/10.5772/33783.
Namitha, K. K., & Negi, P. S. (2010). Chemistry and biotechnology of carotenoids. Critical Reviews in Food Science and Nutrition, 50(8), 1040–8398. https://doi.org/10.1080/10408398.2010.499811.
Nunes, G. L., Boaventura, B. C. B., Pinto, S. S., Verruck, S., Murakami, F. S., Prudêncio, E. S., & de Mello Castanho Amboni, R. D. (2015). Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of Food Engineering, 151, 60–68. https://doi.org/10.1016/j.jfoodeng.2014.10.031.
Paini, M., Aliakbarian, B., Casazza, A. A., Lagazzo, A., Botter, R., & Perego, P. (2015). Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT - Food Science and Technology, 62(1, Part 1), 177–186. https://doi.org/10.1016/j.lwt.2015.01.022.
Pang, S. F., Yusoff, M. M., & Gimbun, J. (2014). Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloids, 37, 159–165. https://doi.org/10.1016/j.foodhyd.2013.10.022.
Rascón, M. P., Beristain, C. I., García, H. S., & Salgado, M. A. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWT - Food Science and Technology, 44(2), 549–557. https://doi.org/10.1016/j.lwt.2010.08.021.
Ravichandran, K., Palaniraj, R., Saw, N. M. M. T., Gabr, A. M. M., Ahmed, A. R., Knorr, D., & Smetanska, I. (2014). Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science and Technology, 51(9), 2216–2221. https://doi.org/10.1007/s13197-012-0728-6.
Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 76–83. https://doi.org/10.1016/j.fbio.2015.12.009.
Rocha, G. A., Fávaro-Trindade, C. S., & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90(1), 37–42. https://doi.org/10.1016/j.fbp.2011.01.001.
Rodea-González, D. A., Cruz-Olivares, J., Román-Guerrero, A., Rodríguez-Huezo, M. E., Vernon-Carter, E. J., & Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of Food Engineering, 111(1), 102–109. https://doi.org/10.1016/j.jfoodeng.2012.01.020.
Rodriguez-Amaya, D., & Kimura, M. (2004). HarvestPlus handbook for carotenoid analysis. HarvestPlus Technical Monographs, 59.
Rodriguez-Amayal, D. B., Rodriguez, E. B., & Amaya-Farfan, J. (2006). Advances in food carotenoid research: chemical and technological aspects, implications in human health. Ma1 J Nutr, 12(1), 101–121.
Saénz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622. https://doi.org/10.1016/j.foodchem.2008.09.095.
Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry, 171, 144–152. https://doi.org/10.1016/j.foodchem.2014.08.064.
Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International (Vol. 76). Elsevier B.V. https://doi.org/10.1016/j.foodres.2015.07.047.
Sanguansri, L., Day, L., Shen, Z., Fagan, P., Weerakkody, R., Cheng, L. J., et al. (2013). Encapsulation of mixtures of tuna oil, tributyrin and resveratrol in a spray dried powder formulation. Food & Function, 4(12), 1794. https://doi.org/10.1039/c3fo60197h.
Schweiggert, R. M., & Carle, R. (2017). Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition, 57(9), 1807–1830. https://doi.org/10.1080/10408398.2015.1012756.
Sharoni, Y., Linnewiel-Hermoni, K., Khanin, M., Salman, H., Veprik, A., Danilenko, M., & Levy, J. (2012). Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Molecular Nutrition and Food Research, 56(2), 259–269. https://doi.org/10.1002/mnfr.201100311.
Simon-Brown, K., Solval, K. M., Chotiko, A., Alfaro, L., Reyes, V., Liu, C., et al. (2016). Microencapsulation of ginger (Zingiber officinale) extract by spray drying technology. LWT - Food Science and Technology, 70, 119–125. https://doi.org/10.1016/j.lwt.2016.02.030.
Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: a promising technique for controlled drug delivery. Research in Pharmaceutical Sciences, 5(2), 65–77 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093624/.
Sommer, A., & Vyas, K. S. (2012). A global clinical view on vitamin A and carotenoids. American Journal of Clinical Nutrition, 96(5), 1204–1206. https://doi.org/10.3945/ajcn.112.034868.
Stoll, L., Costa, T. M. H., Jablonski, A., Flôres, S. H., & de Oliveira Rios, A. (2016). Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology, 9(1), 172–181. https://doi.org/10.1007/s11947-015-1610-0.
Tupuna, D. S., Paese, K., Guterres, S. S., Jablonski, A., Flôres, S. H., & Rios, A. D. O. (2018). Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Industrial Crops and Products, 111(October 2017), 846–855. https://doi.org/10.1016/j.indcrop.2017.12.001.
Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2005). Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science and Emerging Technologies, 6(1), 29–35. https://doi.org/10.1016/j.ifset.2004.11.005.
Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111(4), 816–823. https://doi.org/10.1016/j.foodchem.2008.04.054.
WHO (2009). Global prevalence of vitamin A deficiency in populations at risk WHO Global Database on Vitamin A Deficiency. Resource document. World Health Organization http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/ Accessed 22 Dec 2017.
Acknowledgments
The authors are grateful to Laboratory of New Materials of the Faculty of Mechanical Engineering of the Escuela Politécnica Nacional (LANUM) and the National Institute of Energetic Efficiency and Renewable Energy (INER) for their support in particle size and morphology analysis.
Funding
This study was supported by the PIMI project 14-14 of the Escuela Politécnica Nacional.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Troya, D., Tupuna-Yerovi, D.S. & Ruales, J. Effects of Wall Materials and Operating Parameters on Physicochemical Properties, Process Efficiency, and Total Carotenoid Content of Microencapsulated Banana Passionfruit Pulp (Passiflora tripartita var. mollissima) by Spray-Drying. Food Bioprocess Technol 11, 1828–1839 (2018). https://doi.org/10.1007/s11947-018-2143-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-018-2143-0