Skip to main content
Log in

Tuna Burgers Preserved by the Selected Lactobacillus paracasei IMPC 4.1 Strain

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The use of protective microbial strains in combination with modified atmosphere packaging (MAP) and refrigerated storage on the shelf life of tuna burgers was investigated. Preliminary, the protective ability of three lactic acid bacteria (LAB) cultures (Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus plantarum) have been assessed on ready-to-cook tuna burgers. Among them, L. paracasei showed the best preserving performance and significantly controlled both aerobic mesophilic bacteria and Pseudomonas spp. growth. Subsequently, the efficacy of the selected LAB culture under MAP conditions (5% O2 and 95% CO2) was assessed evaluating microbial and sensory quality, as well as volatile aldehyde content. Results indicated that the shelf life of burgers containing L. paracasei and packaged under MAP was 4 days longer than the control (shelf life about 6 days) and that the applied procedure represents an effective approach for the mild preservation of fish products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas, K. A., Saleh, A. M., Mohamed, A., & Lasekan, O. (2009). The relationship between water activity and fish spoilage during cold storage: a review. Journal of Food, Agriculture and Environment, 7, 86–90.

    Google Scholar 

  • Alvarez, M. A., & Moreno-Arribas, M. V. (2014). The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science & Technology, 39, 146–155.

    Article  CAS  Google Scholar 

  • Arvanitoyannis, I. S., Tsitsika, E. V., & Panagiotaki, P. (2005). Implementation of quality control methods (physicochemical, microbiological and sensory) in conjunction with multivariate analysis towards fish authenticity. International Journal of Food Science and Technology, 40(3), 237–263.

    Article  CAS  Google Scholar 

  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: Role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50(1-2), 131–149.

    Article  CAS  PubMed  Google Scholar 

  • Castellano, P., Belfiore, C., Fadda, S., & Vignolo, G. (2008). A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science, 79(3), 483–499.

    Article  CAS  PubMed  Google Scholar 

  • Chahad, O. B., El Bour, M., Calo-Mata, P., Boudabous, A., & Barros-Velàzquez, J. (2012). Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Research in Microbiology, 163(1), 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Conte, A., Scrocco, C., Brescia, I., & Del Nobile, M. A. (2009). Packaging strategies to prolong the shelf life of minimally processed lampascioni (Muscari comosum). Journal of Food Engineering, 90(2), 199–206.

    Article  CAS  Google Scholar 

  • Corbo, M. R., Altieri, C., Bevilacqua, A., Campaniello, D., D'Amato, D., & Sinigaglia, M. (2005). Estimating packaging atmosphere-temperature effects on the shelf life of cod fillets. European Food Research and Technology, 220(5-6), 509–513.

    Article  CAS  Google Scholar 

  • Costa, C., Conte, A., & Del Nobile, M. A. (2014). Effective preservation techniques to prolong the shelf life of ready-to-eat oysters. Journal of the Science of Food and Agriculture, 94(13), 2661–2667.

    Article  CAS  PubMed  Google Scholar 

  • Daeschel, M. A. (1989). Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology, 43, 164–167.

    CAS  Google Scholar 

  • Dalié, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2009). Lactic acid bacteria—Potential for control of mould growth and mycotoxins. A review. Food Control, 21, 370–380.

    Article  CAS  Google Scholar 

  • Danza, A., Conte, A., & Del Nobile, M. A. (2017). Technological options to control quality of fish burgers. Journal of Food Science and Technology, 54(7), 1802–1808. https://doi.org/10.1007/s13197-017-2609-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bellis, P., Valerio, F., Sisto, A., Lonigro, S. L., & Lavermicocca, P. (2010). Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. International Journal of Food Microbiology, 140(1), 6–13.

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria. London: Blackie Academie & Professional.

    Book  Google Scholar 

  • Del Nobile, M. A., Corbo, M. R., Speranza, B., Sinigaglia, M., Conte, A., & Caroprese, M. (2009). Combined effect of MAP and active compounds on fresh blue fish burger. International Journal of Food Microbiology, 135(3), 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Fontana, C., Cocconcelli, P. S., & Vignolo, G. (2006). Direct molecular approach to monitoring bacterial colonization on vacuum-packaged beef. Applied and Environmental Microbiology, 72(8), 5618–5622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs, P. A. (1987). Novel uses of lactic acid fermentation in food preservation. Journal of Applied Bacteriology, Symposium Supplement, 63, 51S–58S.

    Article  Google Scholar 

  • Goulas, A. E., & Kontominas, M. G. (2007). Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): biochemical and sensory attributes. Food Chemistry, 100(1), 287–296.

    Article  CAS  Google Scholar 

  • Gram, L., & Dalgaard, P. (2002). Food spoilage bacteria-problems and solutions. Current Opinion in Biotechnology, 13, 262–266.

    Article  CAS  PubMed  Google Scholar 

  • International Commission on Microbiological Specifications for Foods (ICMSF). (1986). Sampling plans for fish and shellfish. In Microorganisms in foods 2, sampling for microbiological analysis: principles and scientific applications (2nd ed., pp. 181–196). Toronto: University of Toronto Press.

    Google Scholar 

  • Jinlan, Z., Guorong, L., Pinglan, L., & Yan, Q. (2010). Pentocin 31-1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control, 21, 198–202.

    Article  CAS  Google Scholar 

  • Jones, R. (2004). Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. International Journal of Food Microbiology, 90(3), 273–282.

    Article  PubMed  Google Scholar 

  • Katikou, P., Ambrosiadis, I. G. D., Koidis, P., & Georgakis, S. A. (2007). Effect of Lactobacillus cultures on microbiological, chemical and odour changes during storage of rainbow trout fillets. Journal of the Science of Food and Agriculture, 87(3), 477–484.

    Article  CAS  Google Scholar 

  • Klaenhammer, T. R. (1988). Bacteriocins of lactic acid bacteria. Biochimie, 70(3), 337–349.

    Article  CAS  PubMed  Google Scholar 

  • Leroi, F., Cornet, J., Chevalier, F., Cardinal, M., Coeuret, G., Chaillou, S., & Joffraud, J. J. (2015). Selection of bioprotective cultures for preventing cold-smoked salmon spoilage. International Journal of Food Microbiology, 213, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Lindgren, E., & Dobrogosz, J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Review, 87(1-2), 149–164.

    Article  CAS  Google Scholar 

  • Lirong, X., Xiuzhu, Y., Mengjun, L., Jia, C., & Xingguo, W. (2017). Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. International Journal of Food Properties, 20, 2926–2938.

    Article  CAS  Google Scholar 

  • Lyhs, U., & Björkroth, J. (2008). Lactobacillus Sake/curvatus is the prevailing lactic acid bacterium group in spoiled maatjes herring. Food Microbiology, 25(3), 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Muhialdin, B. J., Hassan, Z., & Sadon, S. K. (2011). Biopreservation of food by lactic acid bacteria against spoilage fungi. Annals. Food Science and Technology. Online reference included in article https://www.researchgate.net/publication/268291548. Accessed on 13 July 2017.

  • Nordic Committee on Food Analysis (NCFA). (2006). Aerobic count and specific spoilage organisms in fish and fish products, NMKL Method No. 184, Espoo, Finland.

  • Parlapani, F. F., Mallouchos, A., Haroutounian, S. A., & Boziaris, I. S. (2017). Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT - Food Science and Technology, 78, 54–62.

    Article  CAS  Google Scholar 

  • Paulus, K., Zacharias, R., Robinson, L., & Geidel, H. (1979). Kritische betrachtungen zur bewertenden pru fung mit skale als einem wesentlichen verfahren der sensorischen analyse. Lebensmittel-Wissenschaft und Technologie, 12, 52–61.

    Google Scholar 

  • Poli, M. B., Messini, A., Parisi, G., Scappini, F., & Figiani, V. (2006). Sensory, physical, chemical and microbiological changes in European sea bass (Dicentrarchus labrax) fillets packed under modified atmosphere/air or prepared from whole fish stored in ice. International Journal of Food Science & Technology, 41, 444–454.

    Article  CAS  Google Scholar 

  • Schillinger, U., Geisen, R., & Holzapfel, W. H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Science and Technology, 7(5), 158–164.

    Article  CAS  Google Scholar 

  • Sivertsvik, M. (2007). The optimized modified atmosphere for packaging of pre-rigor filleted farmed cod (Gadus morhua) is 63 ml/100 ml oxygen and 37 ml/100 ml carbon dioxide. Lebensmittel Wissenschaft und Technologie, 40(3), 430–438.

    Article  CAS  Google Scholar 

  • Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek, 70(2-4), 331–345.

    Article  CAS  PubMed  Google Scholar 

  • Ström, K., Sjörgen, J., Broberg, A., & Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3 phenyllactic acid. Applied and Environmental Microbiology, 68(9), 4322–4327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomé, E., Pereira, V. L., Lopes, C. I., Gibbs, P. A., & Teixeira, P. C. (2008). In vitro tests of suitability of bacteriocin-producing lactic acid bacteria, as potential biopreservation cultures in vacuum-packaged cold-smoked salmon. Food Control, 19(5), 535–543.

    Article  CAS  Google Scholar 

  • Torrieri, E., Cavella, S., Villani, F., & Masi, P. (2006). Influence of modified atmosphere packaging on the chilled shelf life of gutted farmed bass (Dicentrarchus labrax). Journal of Food Engineering, 77(4), 1078–1086.

    Article  Google Scholar 

  • Trondsen, T., Scholderer, J., Lund, E., & Eggen, A. E. (2003). Perceived barriers to consumption of fish among Norwegian women. Appetite, 41(3), 301–314.

    Article  PubMed  Google Scholar 

  • Valerio, F., Lonigro, S. L., Giribaldi, M., Di Biase, M., De Bellis, P., Cavallarin, L., & Lavermicocca, P. (2015). Probiotic Lactobacillus paracasei IMPC 2.1 strain delivered by ready-to-eat swordfish fillets colonizes the human gut after alternate-day supplementation. Journal of Functional Foods, 17, 468–475.

    Article  CAS  Google Scholar 

  • Veloso, M. C. C., Silva, V. M., Santos, G. V., & Andrade, J. (2001). Determination of aldehydes in fish by high-performance liquid chromatograph. Journal of Chromatographic Science, 39(5), 173–176.

    Article  Google Scholar 

  • Velu, S., Abu Bakar, F., Mahyudin, N. A., Saari, N., & Zaman, M. Z. (2013). Effect of modified atmosphere packaging on microbial flora changes in fishery products. International Food Research Journal, 20, 17–26.

    CAS  Google Scholar 

  • Yang, R., & Ray, B. (1994). Factors influencing production of bac-teriocins by lactic acid bacteria. Food Microbiology, 11(4), 281–291.

    Article  Google Scholar 

  • Zhou, X., Chong, Y., Ding, Y., Gu, S., & Liu, L. (2016). Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSEGC-MS, e-nose and sensory evaluation. Food Chemistry, 207, 205–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Apulia Region - Cluster Tecnologici - “Biotecnologie degli alimenti per l’innovazione e la competitività delle principali filiere regionali: estensione della conservabilità e aspetti funzionali” - BIOTECA project code QCBRAJ6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Conte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danza, A., Lucera, A., Lavermicocca, P. et al. Tuna Burgers Preserved by the Selected Lactobacillus paracasei IMPC 4.1 Strain. Food Bioprocess Technol 11, 1651–1661 (2018). https://doi.org/10.1007/s11947-018-2129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2129-y

Keywords

Navigation