Skip to main content

Kinetic Modeling of Texture and Color Changes During Thermal Treatment of Chicken Breast Meat

Abstract

Heat treatment is commonly applied as a primary method for ensuring the microbial safety of poultry meat and to enhance its palatability. Although texture and color of cooked chicken breast meat are important quality parameters for the consumers that need to be controlled during thermal processing, studies assessing the temperature-time-dependent quality changes during thermal treatment are lacking. This work aims to investigate the texture and color changes of chicken breast meat during thermal processing and to develop kinetic models that describe these changes. We studied the storage modulus changes of chicken breast meat as function of temperature. The storage modulus increases from 55 °C until leveling off in an equilibrium value above 80 °C, which was attributed to microstructure changes and described with a sigmoidal function. The changes in the texture (TPA) and color (CIE L*a*b*) of chicken breast meat were measured as function of temperature and time. The texture and color parameters show a rise with heating time until reaching an equilibrium value, while the rate of change increased with temperature. Kinetic models that take the non-zero equilibrium into account were developed to describe the color (lightness) and texture (hardness, gumminess, and chewiness) changes with heating time and temperature. The kinetic models provide a deeper insight into the mechanisms of texture and color changes during thermal treatment. They can be used to predict the texture and color development of chicken breast meat during thermal processing and, thus, help to optimize the process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

t :

time (min)

Q :

quality attribute

T :

temperature (°C)

f :

quality index (−)

n :

reaction order

k :

reaction rate constant (min−1 [Q]1 − n)

k 0 :

pre-exponential factor (min−1 [Q]1 − n)

E a :

activation energy (J/mol)

R :

gas constant (8.314 J/mol K)

L *, a *, b * :

color dimensions (−)

ΔE :

the total color difference (−)

G′:

storage modulus (Pa)

Ha :

hardness (N)

Gu :

gumminess (N)

Cw :

chewiness (N)

0:

initial value

∞:

equilibrium value

References

  1. Bailey, A.J., Light, N.D., 1989. Connective tissue in meat and meat products. Elsevier applied science.

  2. Barbanti, D., & Pasquini, M. (2005). Influence of cooking conditions on cooking loss and tenderness of raw and marinated chicken breast meat. LWT- Food Science and Technology, 38(8), 895–901. https://doi.org/10.1016/j.lwt.2004.08.017.

    Article  CAS  Google Scholar 

  3. Bircan, C., & Barringer, S. a. (2002). Determination of protein denaturation of muscle foods using the dielectric properties. Journal of Food Science, 67(1), 202–205. https://doi.org/10.1111/j.1365-2621.2002.tb11384.x.

    Article  CAS  Google Scholar 

  4. Bourne, M.C., 2002. Principles of objective texture measurement. Food texture viscosity: concept measurement. 2nd Ed.

  5. Brunton, N. P., Cronin, D. A., & Monahan, F. J. (2002). Volatile components associated with freshly cooked and oxidized off-flavours in Turkey breast meat. Flavour and Fragrance Journal, 17(5), 327–334. https://doi.org/10.1002/ffj.1087.

    Article  CAS  Google Scholar 

  6. Christensen, M., Purslow, P. P., & Larsen, L. M. (2000). The effect of cooking temperature on mechanical properties of whole meat, single muscle fibres and perimysial connective tissue. Meat Science, 55(3), 301–307. https://doi.org/10.1016/S0309-1740(99)00157-6.

    Article  CAS  PubMed  Google Scholar 

  7. Daugaard, S. B., Adler-Nissen, J., & Carstensen, J. M. (2010). New vision technology for multidimensional quality monitoring of continuous frying of meat. Food Control, 21(5), 626–632. https://doi.org/10.1016/j.foodcont.2009.09.007.

    Article  CAS  Google Scholar 

  8. van der Sman, R. G. M. (2013). Modeling cooking of chicken meat in industrial tunnel ovens with the Flory-Rehner theory. Meat Science, 95(4), 940–957. https://doi.org/10.1016/j.meatsci.2013.03.027.

    Article  PubMed  Google Scholar 

  9. Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1–26.

    Article  Google Scholar 

  10. Feyissa, A. H., Gernaey, K. V., & Adler-Nissen, J. (2013). 3D modelling of coupled mass and heat transfer of a convection-oven roasting process. Meat Science, 93(4), 810–820. https://doi.org/10.1016/j.meatsci.2012.12.003.

    Article  PubMed  Google Scholar 

  11. Fsis, U., 2000. Chicken from farm to table 1–8.

  12. Goncalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2007). Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. Journal of Food Engineering, 81(4), 693–701. https://doi.org/10.1016/j.jfoodeng.2007.01.011.

    Article  CAS  Google Scholar 

  13. Goñi, S. M., & Salvadori, V. O. (2011). Kinetic modelling of colour changes during beef roasting. Procedia Food Science, 1, 1039–1044. https://doi.org/10.1016/j.profoo.2011.09.155.

    Article  Google Scholar 

  14. Guerrero-Legarreta, I., Hui, Y.H., 2010. Handbook of poultry science and technology, volume 2: ed. John Wiley & Sons, Inc. doi:https://doi.org/10.1002/9780470504475.

  15. Guidi, A., & Castigliego, L. (2010). Poultry meat color. Handb. Poult. Sci. Technol, 2(2), 359–388. https://doi.org/10.1002/9780470504475.ch25.

    Article  Google Scholar 

  16. Haefner, J. W. (2005). Modeling biological systems: principles and applications. New York: Springer-Verlag. https://doi.org/10.1007/b106568.

    Book  Google Scholar 

  17. Hansen, J. F. (1999). On chromatic and geometrical calibration. Denmark: Technical University.

    Google Scholar 

  18. Hashemi, A., & Jafarpour, A. (2016). Rheological and microstructural properties of beef sausage batter formulated with fish fillet mince. Journal of Food Science and Technology, 53(1), 601–610. https://doi.org/10.1007/s13197-015-2052-4.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes, J. M., Oiseth, S. K., Purslow, P. P., & Warner, R. D. (2014). A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Science, 98(3), 520–532. https://doi.org/10.1016/j.meatsci.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  20. Ko, W. C., Liu, W. C., Tsang, Y. T., & Hsieh, C. W. (2007). Kinetics of winter mushrooms (Flammulina velutipes) microstructure and quality changes during thermal processing. Journal of Food Engineering, 81(3), 587–598. https://doi.org/10.1016/j.jfoodeng.2006.12.009.

    Article  CAS  Google Scholar 

  21. Kong, F., Tang, J., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510–520. https://doi.org/10.1016/j.jfoodeng.2007.04.002.

    Article  Google Scholar 

  22. Lawrie, R.A., Ledward, D.A., 2006. Lawrie’s meat science.

  23. Levenspiel, O. (1999). Chemical reaction engineering. Industrial and Engineering Chemistry Research, 38(11), 4140–4143. https://doi.org/10.1021/ie990488g.

    Article  CAS  Google Scholar 

  24. Lewis, G. J., & Purslow, P. P. (1989). The strength and stiffness of perimysial connective tissue isolated from cooked beef muscle. Meat Science, 26(4), 255–269. https://doi.org/10.1016/0309-1740(89)90011-9.

    Article  CAS  PubMed  Google Scholar 

  25. Ling, B., Tang, J., Kong, F., Mitcham, E. J., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food and Bioprocess Technology, 8(2), 343–358. https://doi.org/10.1007/s11947-014-1398-3.

    Article  CAS  Google Scholar 

  26. Magdelaine, P., Spiess, M. P., & Valceschini, E. (2008). Poultry meat consumption trends in Europe. World’s Poultry Science Journal, 64(01), 53–63. https://doi.org/10.1017/S0043933907001717.

    Article  Google Scholar 

  27. Martens, H., Stabursvik, E., & Martens, M. (1982). Texture and color changes in meat during cooking related to thermal-denaturation of muscle proteins. Journal of Texture Studies, 13(3), 291–309.

    Article  Google Scholar 

  28. Micklander, E., Peshlov, B., Purslow, P. P., & Engelsen, S. B. (2002). NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends in Food Science and Technology, 13(9-10), 341–346. https://doi.org/10.1016/S0924-2244(02)00163-2.

    Article  CAS  Google Scholar 

  29. Montejano, J. G., Hamann, D. D., & Lanier, T. C. (1984). Thermally induced gelation of selected comminuted muscle systems-rheological changes during processing, final strengths and microstructure. Journal of Food Science, 49(6), 1496–1505. https://doi.org/10.1111/j.1365-2621.1984.tb12830.x.

    Article  CAS  Google Scholar 

  30. Mudalal, S., Babini, E., Cavani, C., & Petracci, M. (2014). Quantity and functionality of protein fractions in chicken breast fillets affected by white striping. Poultry Science, 93(8), 2108–2116. https://doi.org/10.3382/ps.2014-03911.

    Article  CAS  PubMed  Google Scholar 

  31. OECD, 2018. Meat consumption (indicator). doi:https://doi.org/10.1787/fa290fd0-en.

  32. Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2013). Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Research International, 53(1), 141–148. https://doi.org/10.1016/j.foodres.2013.04.029.

    Article  CAS  Google Scholar 

  33. Rizvi, A. F., & Tong, C. H. (1997). Fractional conversion for determining texture degradation kinetics of vegetables. Journal of Food Science, 62(1), 1–7. https://doi.org/10.1111/j.1365-2621.1997.tb04356.x.

    Article  CAS  Google Scholar 

  34. Sin, G., & Gernaey, K. (2016). Data Handling and parameter estimation. In M.C.M. van Loosdrecht, P.H. Nielsen, C.M. Lopez-Vazquez, & D. Brdjanovic (Eds.), Experimental Methods in Wastewater Treatment (pp. 201–234). Chapter 5. IWA Publishing Company.

  35. Steinfeld, J. I., Francisco, J. S., & Hase, W. L. (1999). Chemical kinetics and dynamics. Upper Saddle River: Prentice Hall.

    Google Scholar 

  36. Thussu, S., & Datta, A. K. (2012). Texture prediction during deep frying: a mechanistic approach. Journal of Food Engineering, 108(1), 111–121. https://doi.org/10.1016/j.jfoodeng.2011.07.017.

    Article  Google Scholar 

  37. Tornberg, E. (2005). Effects of heat on meat proteins—implications on structure and quality of meat products. Meat Science, 70(3), 493–508. https://doi.org/10.1016/j.meatsci.2004.11.021.

    Article  CAS  PubMed  Google Scholar 

  38. Van Boekel, M. A. J. S. (1996). Statistical aspects of kinetic modeling for food science problems. Journal of Food Science, 61(3), 477–485. https://doi.org/10.1111/j.1365-2621.1996.tb13138.x.

    Article  Google Scholar 

  39. Van Boekel, M. A. J. S. (2008). Kinetic modeling of food quality: a critical review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144–158. https://doi.org/10.1111/j.1541-4337.2007.00036.x.

    Article  Google Scholar 

  40. Wattanachant, S., Benjakul, S., & Ledward, D. A. (2005). Effect of heat treatment on changes in texture, structure and properties of Thai indigenous chicken muscle. Food Chemistry, 93(2), 337–348. https://doi.org/10.1016/j.foodchem.2004.09.032.

    Article  CAS  Google Scholar 

  41. Zell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J., (2010). Ohmic cooking of whole turkey meat - Effect of rapid ohmic heating on selected product parameters. Food Chem 120, 724–729. https://doi.org/10.1016/j.foodchem.2009.10.069.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Rabeler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rabeler, F., Feyissa, A.H. Kinetic Modeling of Texture and Color Changes During Thermal Treatment of Chicken Breast Meat. Food Bioprocess Technol 11, 1495–1504 (2018). https://doi.org/10.1007/s11947-018-2123-4

Download citation

Keywords

  • Poultry meat
  • Quality changes
  • Rate law
  • Storage modulus
  • Texture profile analyses (TPA)
  • Thermal processing