Food and Bioprocess Technology

, Volume 11, Issue 7, pp 1422–1436 | Cite as

Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems

  • Cristina Jansen-Alves
  • Karina F. Fernandes
  • Michele M. Crizel-Cardozo
  • Fernanda D. Krumreich
  • Caroline D. Borges
  • Rui C. Zambiazi
Original Paper


Propolis presents several health benefits due to the presence of bioactive compounds, mainly phenolic compounds; however, its application in food is limited due to undesirable odor and low water solubility. The bioactive compounds are usually susceptible to degradation by exposure to light, heat, or oxygen or by interaction with other compounds, which may limit its biological activity. The study aimed the propolis extract microencapsulation using rice, pea, soybean, and ovoalbumin proteins as wall material by spray drying and to analyze their in vitro digestion. The propolis extract presented a high concentration of apigenin. Encapsulation efficiency was greater than 70%, and it was maintained the antioxidant activity of propolis (88% inhibition of DPPH for propolis extract and > 73% for the microparticles). The DSC, ATR-FTIR, and X-ray diffraction techniques confirmed the encapsulation. The microparticles showed different shapes, sizes, and physical characteristics. The microparticles encapsulated with pea protein could be used in formulations of Minas Frescal cheese due to the controlled released, whereas the other microparticles could be used in pudding formulations.


Propolis extract Phenolic compounds Rice protein concentrated Pea protein concentrate Simulated gastrointestinal digestion Cheese Pudding 



We would like to thank CAPES for granting the doctoral scholarship, FAPERGS for the financial support, to the CEME-SUL (FURG) by the SEM analysis and Center for Development, and to the Control of Biomaterials (CDC-Bio/UFPel) by the ATR-FTIR.


  1. Ahn, M. R., Kumazawa, S., Usui, Y., Nakamura, J., Matsuka, M., Zhu, F., & Nakayama, T. (2007). Antioxidant activity and constituents of propolis collected in various areas of China. Food Chemistry, 101(4), 1383–1392.CrossRefGoogle Scholar
  2. Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Shojaosadati, S. A., Dorkoosh, F. A., & Elsabee, M. Z. (2011). Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry, 126(3), 935–940.CrossRefGoogle Scholar
  3. Amagliani, L., O’Regan, J., Kelly, A. L., & O’Mahony, J. A. (2017). Composition and protein profile analysis of rice protein ingredients. Journal of Food Composition and Analysis, 59, 18–26.CrossRefGoogle Scholar
  4. Andrade, J. K. S., Denadai, M., de Oliveira, C. S., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International, 101, 129–138.CrossRefPubMedGoogle Scholar
  5. AOAC (1995). Official methods of analysis of the Association of Official Analytical Chemistry (16th Ed). In In AOAC International, 1141. Washington.Google Scholar
  6. Bhandari, B. R., Senoussi, A., Dumoulin, E. D., & Lebert, A. (1993). Spray drying of concentrated fruit juices. Drying Technology, 11(5), 1081–1092.CrossRefGoogle Scholar
  7. Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebens Wiss Techn (LWT), 28(1), 25–30.CrossRefGoogle Scholar
  8. Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B., & Gremião, M. P. D. (2003). Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. International Journal of Pharmaceutics, 264(1-2), 45–55.CrossRefPubMedGoogle Scholar
  9. Busch, V. M., Pereyra-Gonzalez, A., Šegatin, N., Santagapita, P. R., Poklar Ulrih, N., & Buera, M. P. (2017). Propolis encapsulation by spray drying: characterization and stability. Lebens Wiss Techn (LWT), 75, 227–235.CrossRefGoogle Scholar
  10. Çam, M., Içyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: microencapsulation, storage stability and potential ingredient for functional food development. Lebens Wiss Techn (LWT), 55(1), 117–123.CrossRefGoogle Scholar
  11. Choi, K. O., Ryu, J., Kwak, H. S., & Ko, S. (2010). Spray-dried conjugated linoleic acid encapsulated with Maillard reaction products of whey proteins and maltodextrin. Food Science and Biotechnology, 19(4), 957–965.CrossRefGoogle Scholar
  12. Costa, A. M. M., Nunes, J. C., Lima, B. N. B., Pedrosa, C., Calado, V., Torres, A. G., & Pierucci, A. P. T. R. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168, 157–166.CrossRefPubMedGoogle Scholar
  13. Do Nascimento, T. G., da Silva, P. F., Azevedo, L. F., da Rocha, L. G., Porto, I. C. C. de M., Lima e Moura, T. F. A. et al. (2016). Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and Leishmanicidal activity. Nanoscale Research Letters, 11 (301). DOI
  14. Donhowe, E. G., Flores, F. P., Kerr, W. L., Wicker, L., & Kong, F. (2014). Characterization and in vitro bioavailability of β-carotene: effects of microencapsulation method and food matrix. Lebens Wiss Techn (LWT), 57(1), 42–48.CrossRefGoogle Scholar
  15. dos Reis, A. S., Diedrich, C., de Moura, C., Pereira, D., Almeida, J. d. F., da Silva, L. D., et al. (2017). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at 15 °C. Lebens Wiss Techn (LWT), 76 (B), 76, 306–313.CrossRefGoogle Scholar
  16. Elbaz, N. M., Khalil, I. A., Abd-Rabou, A. A., & El-Sherbiny, I. M. (2016). Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 92, 254–269.CrossRefPubMedGoogle Scholar
  17. Fang, Z., & Bhandari, B. (2012). Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International, 48(2), 478–483.CrossRefGoogle Scholar
  18. Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152.CrossRefPubMedGoogle Scholar
  19. Graikou, K., Popova, M., Gortzi, O., Bankova, V., & Chinou, I. (2016). Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? Lebens Wiss Techn (LWT), 65, 261–267.CrossRefGoogle Scholar
  20. Gutiérrez, T. J., Álvarez, K. (2017). Biopolymers as microencapsulation materials in the food industry. In: Advances in Physicochemical Properties of Biopolymers: Part 2. Martin Masuelli, and Denis Renard (Eds). Bentham Science Publishers. EE.UU. ISBN: 978–1–68108-545-6. E ISBN: 978–1–68108-544-9, 2017. pp. 296–322. doi:
  21. Hao, Z., Yuying, F., Fuge, N., Zeya, L., Chujie, B., Bing, J., Guowen, C., & Xiaomeng, L. (2018). Enhanced antioxidant activity and in vitro release of propolis by acid-induced aggregation using heat-denatured zein and carboxymethyl chitosan. Food Hydrocolloids, 81, 104–112.CrossRefGoogle Scholar
  22. Hoffmann, J. F., Zandoná, G. P., Santos, P. S. D., Dallmann, C. M., Madruga, F. B., Rombaldi, C. V., & Chaves, F. C. (2017). Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry, 237, 638–644.CrossRefPubMedGoogle Scholar
  23. IBGE - Brazilian Institute of Geography and Statistics. Apiculture. (2013). Accessed 11 May 2017.
  24. Jayasundera, M., Adhikari, B., Adhikari, R., & Aldred, P. (2011a). The effect of protein types and low molecular weight surfactants on spray drying of sugar-rich foods. Food Hydrocolloids, 25(3), 459–469.CrossRefGoogle Scholar
  25. Jayasundera, M., Adhikari, B., Adhikari, R., & Aldred, P. (2011b). The effects of proteins and low molecular weight surfactants on spray drying of model sugar-rich foods: powder production and characterisation. Journal of Food Engineering, 104(2), 259–271.CrossRefGoogle Scholar
  26. Jia, Z., Dumont, M.-J., & Orsat, V. (2016). Encapsulation of phenolic compounds presentin plants using protein matrices. Food Bioscience, 15, 87–104.CrossRefGoogle Scholar
  27. Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinionin Colloid InterfaceScience, 19(5), 417–427.CrossRefGoogle Scholar
  28. Kuck, L. S., & Noreña, C. P. Z. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576.CrossRefPubMedGoogle Scholar
  29. Kuck, L. S., Wesolowski, J. L., & Noreña, C. P. Z. (2017). Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents. Food Chemistry, 230, 257–264.CrossRefPubMedGoogle Scholar
  30. Malheiros, P. d. S., Sant’Anna, V., Barbosa, M. d. S., Brandelli, A., & Franco, B. D. G. d. M. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in minas frescal cheese. International Journal of Food Microbiology, 156(3), 272–277.CrossRefGoogle Scholar
  31. Maruf, A., Mst., S. A., Jin-Cheol, L., & Jong-Bang, E. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. Lebens Wiss Techn (LWT), 43, 1307–1312.Google Scholar
  32. Moser, P., Telis, V. R. N., Neves, N. d. A., García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, 214, 308–318.CrossRefPubMedGoogle Scholar
  33. Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2013). Review. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Industrial Crops and Products, 42, 469–479.CrossRefGoogle Scholar
  34. Neto, R. M. S., Tintino, S. R., da Silva, A. R. P., Costa, M. d. S., Boligon, A. A., Matias, E. F. F., et al. (2017). Seasonal variation of Brazilian red propolis: antibacterial activity, synergistic effect and phytochemical screening. Food and Chemical Toxicology, 107, 572–580.CrossRefGoogle Scholar
  35. Nori, M. P., Favaro-Trindade, C. S., Alencar, S. M., Thomazini, M., Balieiro, J. C. C., & Castillo, C. J. C. (2011). Microencapsulation of propolis extract by complex coacervation. Lebens Wiss Techn (LWT), 44(2), 429–435.CrossRefGoogle Scholar
  36. Pierucci, P. T. R., Andrade, L. R., Farina, M., Pedrosa, C., & Rocha-Leão, M. H. M. (2007). Comparison of α-tocopherol microparticles produced with different wall materials: pea protein a new interesting alternative. Journal of Microencapsulation, 24(3), 201–213.CrossRefPubMedGoogle Scholar
  37. Rosseto, H. C., de Toledo, L. de A. S., de Francisco, L. M. B., Esposito, E., Lim, Y., Valacchi, G. et al. (2017). Nanostructured lipid systems modified with waste material of propolis for wound healing: design, in vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 158, 441–452.Google Scholar
  38. Shang-Jung, Y., Jia-Jiuan, W., Yuan-Chuen, W., Chih-Feng, H., Tzong-Ming, W., Chwen-Jen, S., & Chieh-Ming, J. C. (2014). Encapsulation of propolis flavonoids in a water soluble polymer using pressurized carbon dioxide anti-solvent crystallization. The Journal of Supercritical Fluids, 94, 138–146.CrossRefGoogle Scholar
  39. Silva, J. C., Rodrigues, S., Feás, X., & Estevinho, L. M. (2012). Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, 50(5), 1790–1795.CrossRefPubMedGoogle Scholar
  40. da Silva, F. C., da Fonseca, C. R., de Alencar, S. M., Thomazini, M., Balieiro, J. C. d. C., Pittia, P., & Favaro-Trindade, C. S. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28–36.CrossRefGoogle Scholar
  41. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  42. Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695–702.CrossRefGoogle Scholar
  43. Spinelli, S., Conte, A., Lecce, L., Incoronato, A. L., & Nobile, A. D. M. (2015). Microencapsulated propolis to enhance the antioxidant properties of fresh fish burgers. Journal of Food Process Engineering, 38(6), 527–535.CrossRefGoogle Scholar
  44. Sritham, E., & Gunasekaran, S. (2016). Thermal evaluation of sucrose-maltodextrin-sodium citrate bioglass: glass transition temperature. Food Hydrocolloids, 60, 589–597.CrossRefGoogle Scholar
  45. Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., & Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31–38.CrossRefGoogle Scholar
  46. Tan, C., Zhang, Y., Abbas, S., Feng, B., Zhang, X., & Xia, S. (2014). Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids and Surfaces B: Biointerfaces, 123, 692–700.CrossRefPubMedGoogle Scholar
  47. Tarhinia, M., Greige-Gerges, H., & Elaissaria, A. (2017). Review. Protein-based nanoparticles: from preparation to encapsulation of active molecules. International Journal of Pharmaceutics, 522, 172–197.CrossRefGoogle Scholar
  48. Visentini, F. F., Sponton, O. E., Perez, A. A., & Santiago, L. G. (2017). Formation and colloidal stability of ovalbumin-retinol nanocomplexes. Food Hydrocolloids, 67, 130–138.CrossRefGoogle Scholar
  49. Waller, S. B., Peter, C. M., Hoffmann, J. S., Picoli, T., Osorio, L. d. G., Chaves, F., et al. (2017). Chemical and cytotoxic analyses of brown Brazilian propolis (Apis mellifera) and its in vitro activity against itraconazole resistant Sporothrix brasiliensis. Microbial Pathogenesis, 105, 117–121.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agroindustril Science and Technology, Faculty of Agronomy Eliseu MacielFederal University of PelotasPelotasBrazil
  2. 2.Center of Chemical, Pharmaceuticals and Food SciencesFederal University of PelotasPelotasBrazil

Personalised recommendations