Skip to main content
Log in

Quality Assurance of Model Infant Milk Formula Using a Front-Face Fluorescence Process Analytical Tool

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Front-face fluorescence spectroscopy (FFFS) was evaluated as a quality assurance process analytical technology (PAT) tool for infant milk formula (IMF) manufacture. Batches of first-stage IMF (60:40 whey protein:casein ratio) powder were produced with protein:fat:lactose ratios of 1.3:3.6:7.3, differing only in heat treatment applied prior to spray drying (72, 95, or 115 °C for 15 s). Each IMF powder was stored at 15 ± 2 °C and 37 ± 2 °C and analyzed at months 0, 3, 6, and 12. Partial least squares (PLS) models were developed for IMF in both powder and liquid states using FFFS spectra to predict pre-drying heat treatment temperature, soluble protein content, and storage time. Models developed using tryptophan emission spectra for IMF powder predicted storage time, pre-drying heat treatment temperature, and soluble protein content with RMSECV values of 0.3 months, 8.3 °C, and 1.01 g protein/100 g powder, respectively. IMF powders were rehydrated to 13% total solids and analyzed using the vitamin A emission spectra. Models developed for rehydrated IMF predicted storage time and pre-drying heat treatment temperature with RMSECV values of 1.5 months and 6.7 °C, respectively. Surface free fats were predicted with an RMSECV range of 0.12–0.20% (w/w of powder) in rehydrated IMF. PLS discriminant analysis models developed for both powder and liquid IMF samples successfully discriminated for storage temperature. This preliminary study demonstrates the strong potential of FFFS as a PAT tool for IMF quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birlouez-Aragon, I., Nicolas, M., Metais, A., Marchond, N., Grenier, J., & Calvo, D. (1998). A rapid Fluorimetric method to estimate the heat treatment of liquid milk. International Dairy Journal, 8(9), 771–777. https://doi.org/10.1016/S0958-6946(98)00119-8.

    Article  CAS  Google Scholar 

  • Birlouez-Aragon, I., Sabat, P., & Gouti, N. (2002). A new method for discriminating milk heat treatment. French patent no. 2752941. International Dairy Journal, 12(1), 59–67.

    Article  CAS  Google Scholar 

  • Birlouez-Aragon, I., Pischetsrieder, M., Leclere, J., Morales, F., Hasenkopf, K., Kientsch-Engel, R., et al. (2004). Assessment of protein glycation markers in infant formulas. Food Chemistry, 87(2), 253–259.

    Article  CAS  Google Scholar 

  • Birlouez-Aragon, I., Locquet, N., Louvent, E., Bouveresse, D. J. R., & Stahl, P. (2005). Evaluation of the Maillard reaction in infant formulas by means of front-face fluorescence. Annals of the New York Academy of Sciences, 1043(1), 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Servín, J. L., de la Torre Carbot, K., García-Gasca, T., Castellote, A. I., & López-Sabater, M. C. (2015). Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet. Food Chemistry, 166, 486–491. https://doi.org/10.1016/j.foodchem.2014.06.050.

    Article  CAS  PubMed  Google Scholar 

  • Dal Zotto, R., De Marchi, M., Cecchinato, A., Penasa, M., Cassandro, M., Carnier, P., et al. (2008). Reproducibility and repeatability of measures of milk coagulation properties and predictive ability of mid-infrared reflectance spectroscopy. Journal of Dairy Science, 91(10), 4103–4112. https://doi.org/10.3168/jds.2007-0772.

    Article  CAS  PubMed  Google Scholar 

  • de Sereys, A. L., Muller, S., Desic, S., Troise, A., Fogliano, V., Acharid, A., et al. (2014). Potential of the FAST index to characterize infant formula quality. Handbook of dietary and nutritional aspects of bottle feeding. Wageningen Academic Publishers (2014)

  • De Marchi, M., Fagan, C. C., O’Donnell, C. P., Cecchinato, A., Dal Zotto, R., Cassandro, M., et al. (2009). Prediction of coagulation properties, titratable acidity, and pH of bovine milk using mid-infrared spectroscopy. Journal of Dairy Science, 92(1), 423–432. https://doi.org/10.3168/jds.2008-1163.

    Article  CAS  PubMed  Google Scholar 

  • Diez, R., Ortiz, M., Sarabia, L., & Birlouez-Aragon, I. (2008). Potential of front face fluorescence associated to PLS regression to predict nutritional parameters in heat treated infant formula models. Analytica Chimica Acta, 606(2), 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Dufour, E., & Riaublanc, A. (1997). Potentiality of spectroscopic methods for the characterisation of dairy products. I. Front-face fluorescence study of raw, heated and homogenised milks. Le Lait, 77(6), 657–670.

    Article  CAS  Google Scholar 

  • Dufour, E., Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., & Mouhous Riou, N. (2000). Phase transition of triglycerides during semi-hard cheese ripening. International Dairy Journal, 10(1), 81–93. https://doi.org/10.1016/S0958-6946(00)00025-X.

    Article  CAS  Google Scholar 

  • GEA-Niro (2012). Analytical methods for dry milk products. www.niro.com/methods Accessed 28 Sept 2017

  • Guan, R.-F., Liu, D.-H., Ye, X. Q., & Yang, K. (2005). Use of fluorometry for determination of skim milk powder adulteration in fresh milk. Journal of Zhejiang University. Science. B, 6(11), 1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammami, M., Dridi, S., Zaïdi, F., Maâmouri, O., Rouissi, H., Blecker, C., & Karoui, R. (2013). Use of front-face fluorescence spectroscopy to differentiate sheep milks from different genotypes and feeding systems. International Journal of Food Properties, 16(6), 1322–1338.

    Article  CAS  Google Scholar 

  • Hartman, A. M., & Dryden, L. P. (1965). Vitamins in milk and milk products. Vitamins in milk and milk products.

  • Kamal, M., & Karoui, R. (2015). Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: a review. Trends in Food Science & Technology, 46(1), 27–48. https://doi.org/10.1016/j.tifs.2015.07.007.

    Article  CAS  Google Scholar 

  • Karoui, R., & De Baerdemaeker, J. (2007). A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chemistry, 102(3), 621–640.

    Article  CAS  Google Scholar 

  • Kehoe, J. J., Remondetto, G. E., Subirade, M., Morris, E. R., & Brodkorb, A. (2008). Tryptophan-mediated denaturation of β-lactoglobulin A by UV irradiation. Journal of Agricultural and Food Chemistry, 56(12), 4720–4725.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, G. M., O’Mahony, J. A., Kelly, A. L., Huppertz, T., Kennedy, D., & O’Callaghan, D. J. (2015). Influence of protein concentration on surface composition and physico-chemical properties of spray-dried milk protein concentrate powders. International Dairy Journal, 51, 34–40. https://doi.org/10.1016/j.idairyj.2015.07.001.

    Article  CAS  Google Scholar 

  • Lacotte, P., Gomez, F., Bardeau, F., Muller, S., Acharid, A., Quervel, X., Trossat, P., & Birlouez-Aragon, I. (2015). Amaltheys: a fluorescence-based analyzer to assess cheese milk denatured whey proteins. Journal of Dairy Science, 98(10), 6668–6677.

    Article  CAS  PubMed  Google Scholar 

  • Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčíková, K. (2006). Vitamin losses: retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19(4), 252–276. https://doi.org/10.1016/j.jfca.2005.04.014.

    Article  CAS  Google Scholar 

  • Liu, X., & Metzger, L. (2007). Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. Journal of Dairy Science, 90(1), 24–37.

    Article  CAS  PubMed  Google Scholar 

  • Maher, P. G., Roos, Y. H., Kilcawley, K. N., Auty, M. A. E., & Fenelon, M. A. (2015). Levels of pentanal and hexanal in spray dried nanoemulsions. LWT - Food Science and Technology, 63(2), 1069–1075. https://doi.org/10.1016/j.lwt.2015.04.044.

    Article  CAS  Google Scholar 

  • Martens, H., & Martens, M. (2000). Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference, 11(1–2), 5–16. https://doi.org/10.1016/S0950-3293(99)00039-7.

    Article  Google Scholar 

  • McCarthy, N. A., Gee, V. L., Hickey, D. K., Kelly, A. L., O’Mahony, J. A., & Fenelon, M. A. (2013). Effect of protein content on the physical stability and microstructure of a model infant formula. International Dairy Journal, 29(1), 53–59. https://doi.org/10.1016/j.idairyj.2012.10.004.

    Article  CAS  Google Scholar 

  • McSweeney, P., & Fox, P. (2009). Advanced Dairy Chemistry, Volume 3: Lactose, Water, Salts and Minor Constituents. Springer Science+ Business Media, New York, USA.

  • Miquel Becker, E., Christensen, J., Frederiksen, C., & Haugaard, V. (2003). Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin. Journal of Dairy Science, 86(8), 2508–2515.

    Article  CAS  PubMed  Google Scholar 

  • Moros, J., Garrigues, S., & De la Guardia, M. (2007). Evaluation of nutritional parameters in infant formulas and powdered milk by Raman spectroscopy. Analytica Chimica Acta, 593(1), 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Mungkarndee, R., Techakriengkrai, I., Tumcharern, G., & Sukwattanasinitt, M. (2016). Fluorescence sensor array for identification of commercial milk samples according to their thermal treatments. Food Chemistry, 197(Part A), 198–204. https://doi.org/10.1016/j.foodchem.2015.10.083.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, E. G., Tobin, J. T., Roos, Y. H., & Fenelon, M. A. (2013). A high-solids steam injection process for the manufacture of powdered infant milk formula. Dairy Science & Technology, 1–13.

  • O’Donnell, C. P., Fagan, C., & Cullen, P. J. (2014). Process analytical technology for the food industry. Springer.

  • Pomerantsev, A. L., & Rodionova, O. Y. (2012). Process analytical technology: a critical view of the chemometricians. Journal of Chemometrics, 26(6), 299–310.

    Article  CAS  Google Scholar 

  • Qi, P. X., Ren, D., Xiao, Y., & Tomasula, P. M. (2015). Effect of homogenization and pasteurization on the structure and stability of whey protein in milk. Journal of Dairy Science, 98(5), 2884–2897.

    Article  CAS  PubMed  Google Scholar 

  • Riley, B. S., & Li, X. (2011). Quality by design and process analytical technology for sterile products—where are we now? AAPS PharmSciTech, 12(1), 114–118.

    Article  PubMed  Google Scholar 

  • Sahar, A., Boubellouta, T., Lepetit, J., & Dufour, É. (2009). Front-face fluorescence spectroscopy as a tool to classify seven bovine muscles according to their chemical and rheological characteristics. Meat Science, 83(4), 672–677. https://doi.org/10.1016/j.meatsci.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Saricoban, C., & Yilmaz, M. T. (2010). Modelling the effects of processing factors on the changes in colour parameters of cooked meatballs using response surface methodology. World Applied Sciences Journal, 9(1), 14–22.

    Google Scholar 

  • Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of front-face fluorescence for assessing thermal processing of milk. Journal of Food Science, 71(2), C69–C74.

    Article  CAS  Google Scholar 

  • Singh, H., & Ye, A. (2010). Controlling milk protein interactions to enhance the reconstitution properties of whole milk powders—a minireview. Dairy Science & Technology, 90(2–3), 123–136.

    Article  CAS  Google Scholar 

  • Tajammal Munir, M., Yu, W., Young, B. R., & Wilson, D. I. (2015). The current status of process analytical technologies in the dairy industry. Trends in Food Science & Technology, 43(2), 205–218. https://doi.org/10.1016/j.tifs.2015.02.010.

    Article  CAS  Google Scholar 

  • Torre, M., San Andres, M., Vera, S., Montalvo, G., & Valiente, M. (2009). Retinol fluorescence: a simple method to differentiate different bilayer morphologies. Colloid and Polymer Science, 287(8), 951–959.

  • Vignolles, M.-L., Jeantet, R., Lopez, C., & Schuck, P. (2007). Free fat, surface fat and dairy powders: interactions between process and product. A review. Le Lait, 87(3), 187–236.

    Article  CAS  Google Scholar 

  • Williams, P. C. (2003). Near-infrared technology getting the best out of light. A Short Course in the Practical Implementation of Near Infrared Spectroscopy for the User. 1.1 ed. PDKProjects Inc., Nanaimo, Canada., 109.

  • Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1(2), 117–129. https://doi.org/10.1007/s11947-007-0033-y.

    Article  Google Scholar 

  • Woodcock, T., Downey, G., & O’Donnell, C. P. (2009). Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey. Food Chemistry, 114(2), 742–746. https://doi.org/10.1016/j.foodchem.2008.10.034.

    Article  CAS  Google Scholar 

  • Zhao, M., Downey, G., & O’Donnell, C. P. (2015). Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. Journal of Agricultural and Food Chemistry, 63(5), 1433–1441.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Andrea Badellino from School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland for his technical assistance with experimental work.

Funding

This research receive funding from the Irish Department of Agriculture, Food and the Marine through its Food Institutional Research Measure (FIRM) initiative (project 11/F/052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin G. Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henihan, L.E., O’Donnell, C.P., Esquerre, C. et al. Quality Assurance of Model Infant Milk Formula Using a Front-Face Fluorescence Process Analytical Tool. Food Bioprocess Technol 11, 1402–1411 (2018). https://doi.org/10.1007/s11947-018-2112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2112-7

Keywords

Navigation