Quality Assurance of Model Infant Milk Formula Using a Front-Face Fluorescence Process Analytical Tool

  • Lisa E. Henihan
  • Colm P. O’Donnell
  • Carlos Esquerre
  • Eoin G. Murphy
  • Donal J. O’Callaghan
Original Paper
  • 5 Downloads

Abstract

Front-face fluorescence spectroscopy (FFFS) was evaluated as a quality assurance process analytical technology (PAT) tool for infant milk formula (IMF) manufacture. Batches of first-stage IMF (60:40 whey protein:casein ratio) powder were produced with protein:fat:lactose ratios of 1.3:3.6:7.3, differing only in heat treatment applied prior to spray drying (72, 95, or 115 °C for 15 s). Each IMF powder was stored at 15 ± 2 °C and 37 ± 2 °C and analyzed at months 0, 3, 6, and 12. Partial least squares (PLS) models were developed for IMF in both powder and liquid states using FFFS spectra to predict pre-drying heat treatment temperature, soluble protein content, and storage time. Models developed using tryptophan emission spectra for IMF powder predicted storage time, pre-drying heat treatment temperature, and soluble protein content with RMSECV values of 0.3 months, 8.3 °C, and 1.01 g protein/100 g powder, respectively. IMF powders were rehydrated to 13% total solids and analyzed using the vitamin A emission spectra. Models developed for rehydrated IMF predicted storage time and pre-drying heat treatment temperature with RMSECV values of 1.5 months and 6.7 °C, respectively. Surface free fats were predicted with an RMSECV range of 0.12–0.20% (w/w of powder) in rehydrated IMF. PLS discriminant analysis models developed for both powder and liquid IMF samples successfully discriminated for storage temperature. This preliminary study demonstrates the strong potential of FFFS as a PAT tool for IMF quality assurance.

Keywords

Front-face fluorescence spectroscopy Process analytical technology Chemometrics Infant milk formula Tryptophan Surface free fat 

Notes

Acknowledgements

We thank Mr. Andrea Badellino from School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland for his technical assistance with experimental work.

Funding Information

This research receive funding from the Irish Department of Agriculture, Food and the Marine through its Food Institutional Research Measure (FIRM) initiative (project 11/F/052).

References

  1. Birlouez-Aragon, I., Nicolas, M., Metais, A., Marchond, N., Grenier, J., & Calvo, D. (1998). A rapid Fluorimetric method to estimate the heat treatment of liquid milk. International Dairy Journal, 8(9), 771–777.  https://doi.org/10.1016/S0958-6946(98)00119-8.CrossRefGoogle Scholar
  2. Birlouez-Aragon, I., Sabat, P., & Gouti, N. (2002). A new method for discriminating milk heat treatment. French patent no. 2752941. International Dairy Journal, 12(1), 59–67.CrossRefGoogle Scholar
  3. Birlouez-Aragon, I., Pischetsrieder, M., Leclere, J., Morales, F., Hasenkopf, K., Kientsch-Engel, R., et al. (2004). Assessment of protein glycation markers in infant formulas. Food Chemistry, 87(2), 253–259.CrossRefGoogle Scholar
  4. Birlouez-Aragon, I., Locquet, N., Louvent, E., Bouveresse, D. J. R., & Stahl, P. (2005). Evaluation of the Maillard reaction in infant formulas by means of front-face fluorescence. Annals of the New York Academy of Sciences, 1043(1), 308–318.CrossRefGoogle Scholar
  5. Chávez-Servín, J. L., de la Torre Carbot, K., García-Gasca, T., Castellote, A. I., & López-Sabater, M. C. (2015). Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet. Food Chemistry, 166, 486–491.  https://doi.org/10.1016/j.foodchem.2014.06.050.CrossRefGoogle Scholar
  6. Dal Zotto, R., De Marchi, M., Cecchinato, A., Penasa, M., Cassandro, M., Carnier, P., et al. (2008). Reproducibility and repeatability of measures of milk coagulation properties and predictive ability of mid-infrared reflectance spectroscopy. Journal of Dairy Science, 91(10), 4103–4112.  https://doi.org/10.3168/jds.2007-0772.CrossRefGoogle Scholar
  7. de Sereys, A. L., Muller, S., Desic, S., Troise, A., Fogliano, V., Acharid, A., et al. (2014). Potential of the FAST index to characterize infant formula quality. Handbook of dietary and nutritional aspects of bottle feeding. Wageningen Academic Publishers (2014)Google Scholar
  8. De Marchi, M., Fagan, C. C., O’Donnell, C. P., Cecchinato, A., Dal Zotto, R., Cassandro, M., et al. (2009). Prediction of coagulation properties, titratable acidity, and pH of bovine milk using mid-infrared spectroscopy. Journal of Dairy Science, 92(1), 423–432.  https://doi.org/10.3168/jds.2008-1163.CrossRefGoogle Scholar
  9. Diez, R., Ortiz, M., Sarabia, L., & Birlouez-Aragon, I. (2008). Potential of front face fluorescence associated to PLS regression to predict nutritional parameters in heat treated infant formula models. Analytica Chimica Acta, 606(2), 151–158.CrossRefGoogle Scholar
  10. Dufour, E., & Riaublanc, A. (1997). Potentiality of spectroscopic methods for the characterisation of dairy products. I. Front-face fluorescence study of raw, heated and homogenised milks. Le Lait, 77(6), 657–670.CrossRefGoogle Scholar
  11. Dufour, E., Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., & Mouhous Riou, N. (2000). Phase transition of triglycerides during semi-hard cheese ripening. International Dairy Journal, 10(1), 81–93.  https://doi.org/10.1016/S0958-6946(00)00025-X.CrossRefGoogle Scholar
  12. GEA-Niro (2012). Analytical methods for dry milk products. www.niro.com/methods Accessed 28 Sept 2017
  13. Guan, R.-F., Liu, D.-H., Ye, X. Q., & Yang, K. (2005). Use of fluorometry for determination of skim milk powder adulteration in fresh milk. Journal of Zhejiang University. Science. B, 6(11), 1101.CrossRefGoogle Scholar
  14. Hammami, M., Dridi, S., Zaïdi, F., Maâmouri, O., Rouissi, H., Blecker, C., & Karoui, R. (2013). Use of front-face fluorescence spectroscopy to differentiate sheep milks from different genotypes and feeding systems. International Journal of Food Properties, 16(6), 1322–1338.CrossRefGoogle Scholar
  15. Hartman, A. M., & Dryden, L. P. (1965). Vitamins in milk and milk products. Vitamins in milk and milk products. Google Scholar
  16. Kamal, M., & Karoui, R. (2015). Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: a review. Trends in Food Science & Technology, 46(1), 27–48.  https://doi.org/10.1016/j.tifs.2015.07.007.CrossRefGoogle Scholar
  17. Karoui, R., & De Baerdemaeker, J. (2007). A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chemistry, 102(3), 621–640.CrossRefGoogle Scholar
  18. Kehoe, J. J., Remondetto, G. E., Subirade, M., Morris, E. R., & Brodkorb, A. (2008). Tryptophan-mediated denaturation of β-lactoglobulin A by UV irradiation. Journal of Agricultural and Food Chemistry, 56(12), 4720–4725.CrossRefGoogle Scholar
  19. Kelly, G. M., O’Mahony, J. A., Kelly, A. L., Huppertz, T., Kennedy, D., & O’Callaghan, D. J. (2015). Influence of protein concentration on surface composition and physico-chemical properties of spray-dried milk protein concentrate powders. International Dairy Journal, 51, 34–40.  https://doi.org/10.1016/j.idairyj.2015.07.001.CrossRefGoogle Scholar
  20. Lacotte, P., Gomez, F., Bardeau, F., Muller, S., Acharid, A., Quervel, X., Trossat, P., & Birlouez-Aragon, I. (2015). Amaltheys: a fluorescence-based analyzer to assess cheese milk denatured whey proteins. Journal of Dairy Science, 98(10), 6668–6677.CrossRefGoogle Scholar
  21. Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčíková, K. (2006). Vitamin losses: retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19(4), 252–276.  https://doi.org/10.1016/j.jfca.2005.04.014.CrossRefGoogle Scholar
  22. Liu, X., & Metzger, L. (2007). Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. Journal of Dairy Science, 90(1), 24–37.CrossRefGoogle Scholar
  23. Maher, P. G., Roos, Y. H., Kilcawley, K. N., Auty, M. A. E., & Fenelon, M. A. (2015). Levels of pentanal and hexanal in spray dried nanoemulsions. LWT - Food Science and Technology, 63(2), 1069–1075.  https://doi.org/10.1016/j.lwt.2015.04.044.CrossRefGoogle Scholar
  24. Martens, H., & Martens, M. (2000). Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference, 11(1–2), 5–16.  https://doi.org/10.1016/S0950-3293(99)00039-7.CrossRefGoogle Scholar
  25. McCarthy, N. A., Gee, V. L., Hickey, D. K., Kelly, A. L., O’Mahony, J. A., & Fenelon, M. A. (2013). Effect of protein content on the physical stability and microstructure of a model infant formula. International Dairy Journal, 29(1), 53–59.  https://doi.org/10.1016/j.idairyj.2012.10.004.CrossRefGoogle Scholar
  26. McSweeney, P., & Fox, P. (2009). Advanced Dairy Chemistry, Volume 3: Lactose, Water, Salts and Minor Constituents. Springer Science+ Business Media, New York, USA.Google Scholar
  27. Miquel Becker, E., Christensen, J., Frederiksen, C., & Haugaard, V. (2003). Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin. Journal of Dairy Science, 86(8), 2508–2515.CrossRefGoogle Scholar
  28. Moros, J., Garrigues, S., & De la Guardia, M. (2007). Evaluation of nutritional parameters in infant formulas and powdered milk by Raman spectroscopy. Analytica Chimica Acta, 593(1), 30–38.CrossRefGoogle Scholar
  29. Mungkarndee, R., Techakriengkrai, I., Tumcharern, G., & Sukwattanasinitt, M. (2016). Fluorescence sensor array for identification of commercial milk samples according to their thermal treatments. Food Chemistry, 197(Part A), 198–204.  https://doi.org/10.1016/j.foodchem.2015.10.083.CrossRefGoogle Scholar
  30. Murphy, E. G., Tobin, J. T., Roos, Y. H., & Fenelon, M. A. (2013). A high-solids steam injection process for the manufacture of powdered infant milk formula. Dairy Science & Technology, 1–13.Google Scholar
  31. O’Donnell, C. P., Fagan, C., & Cullen, P. J. (2014). Process analytical technology for the food industry. Springer.Google Scholar
  32. Pomerantsev, A. L., & Rodionova, O. Y. (2012). Process analytical technology: a critical view of the chemometricians. Journal of Chemometrics, 26(6), 299–310.CrossRefGoogle Scholar
  33. Qi, P. X., Ren, D., Xiao, Y., & Tomasula, P. M. (2015). Effect of homogenization and pasteurization on the structure and stability of whey protein in milk. Journal of Dairy Science, 98(5), 2884–2897.CrossRefGoogle Scholar
  34. Riley, B. S., & Li, X. (2011). Quality by design and process analytical technology for sterile products—where are we now? AAPS PharmSciTech, 12(1), 114–118.CrossRefGoogle Scholar
  35. Sahar, A., Boubellouta, T., Lepetit, J., & Dufour, É. (2009). Front-face fluorescence spectroscopy as a tool to classify seven bovine muscles according to their chemical and rheological characteristics. Meat Science, 83(4), 672–677.  https://doi.org/10.1016/j.meatsci.2009.08.002.CrossRefGoogle Scholar
  36. Saricoban, C., & Yilmaz, M. T. (2010). Modelling the effects of processing factors on the changes in colour parameters of cooked meatballs using response surface methodology. World Applied Sciences Journal, 9(1), 14–22.Google Scholar
  37. Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of front-face fluorescence for assessing thermal processing of milk. Journal of Food Science, 71(2), C69–C74.CrossRefGoogle Scholar
  38. Singh, H., & Ye, A. (2010). Controlling milk protein interactions to enhance the reconstitution properties of whole milk powders—a minireview. Dairy Science & Technology, 90(2–3), 123–136.CrossRefGoogle Scholar
  39. Tajammal Munir, M., Yu, W., Young, B. R., & Wilson, D. I. (2015). The current status of process analytical technologies in the dairy industry. Trends in Food Science & Technology, 43(2), 205–218.  https://doi.org/10.1016/j.tifs.2015.02.010.CrossRefGoogle Scholar
  40. Torre, M., San Andres, M., Vera, S., Montalvo, G., & Valiente, M. (2009). Retinol fluorescence: a simple method to differentiate different bilayer morphologies. Colloid and Polymer Science, 287(8), 951–959.Google Scholar
  41. Vignolles, M.-L., Jeantet, R., Lopez, C., & Schuck, P. (2007). Free fat, surface fat and dairy powders: interactions between process and product. A review. Le Lait, 87(3), 187–236.CrossRefGoogle Scholar
  42. Williams, P. C. (2003). Near-infrared technology getting the best out of light. A Short Course in the Practical Implementation of Near Infrared Spectroscopy for the User. 1.1 ed. PDKProjects Inc., Nanaimo, Canada., 109.Google Scholar
  43. Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. (2008). Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1(2), 117–129.  https://doi.org/10.1007/s11947-007-0033-y.CrossRefGoogle Scholar
  44. Woodcock, T., Downey, G., & O’Donnell, C. P. (2009). Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey. Food Chemistry, 114(2), 742–746.  https://doi.org/10.1016/j.foodchem.2008.10.034.CrossRefGoogle Scholar
  45. Zhao, M., Downey, G., & O’Donnell, C. P. (2015). Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. Journal of Agricultural and Food Chemistry, 63(5), 1433–1441.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lisa E. Henihan
    • 1
    • 2
  • Colm P. O’Donnell
    • 2
  • Carlos Esquerre
    • 2
  • Eoin G. Murphy
    • 1
  • Donal J. O’Callaghan
    • 1
  1. 1.Food Chemistry and Technology DepartmentTeagasc Food Research CentreFermoyIreland
  2. 2.School of Biosystems and Food EngineeringUniversity College DublinDublin 4Ireland

Personalised recommendations