Food and Bioprocess Technology

, Volume 11, Issue 7, pp 1359–1369 | Cite as

Inactivation Kinetics of Pectin Methylesterase, Polyphenol Oxidase, and Peroxidase in Cloudy Apple Juice under Microwave and Conventional Heating to Evaluate Non-Thermal Microwave Effects

  • Érica Sayuri Siguemoto
  • Letícia Jyo Pereira
  • Jorge Andrey Wilhelms Gut
Original Paper
  • 43 Downloads

Abstract

Continuous-flow microwave pasteurization provides important advantages over conventional heat exchangers such as fast volumetric heating, lower tube surface temperature, and possible non-thermal effects that enhance enzymatic and bacterial inactivation. Conventional and microwave-assisted inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) in cloudy apple juice were investigated to evaluate non-thermal effects. Experiments were conducted to provide uniform heating with accurate temperature acquisition and similar temperature profiles for conventional and microwave treatments. A two-fraction first-order kinetic model was successfully fitted to the data in a procedure that took into account the whole time-temperature profile instead of assuming isothermal conditions. Predicted inactivation curves for pasteurization at 70 and 80 °C of the cloudy apple juice showed that PME has the highest thermal resistance (residual activity of 30% after 250 s at 80 °C) and that there was no evidence of non-thermal microwave effects on the inactivation of these enzymes.

Keywords

Apple juice Enzyme Microwave Pasteurization Kinetic 

Notes

Funding Information

The authors acknowledge financial support from the São Paulo Research Foundation—FAPESP (grants 2013/07914-8, 2014/06026-4, and 2014/17534-0) and from the National Council for Scientific and Technological Development—CNPq (grant 459177/2014-1) and also Prof. Adalberto Pessoa Junior from the Faculty of Pharmaceutical Sciences at the University of São Paulo for access to their facilities.

References

  1. Aguiar, H. F., Yamashita, A. S., & Gut, J. A. W. (2012). Development of enzymic time-temperature integrators with rapid detection for evaluation of continuous HTST pasteurization processes. LWT - Food Science and Technology, 47(1), 110–116.CrossRefGoogle Scholar
  2. AOAC. (2010). Official methods of analysis of AOAC international (18th ed.). Washington, DC: AOAC, Association of official analytical chemists.Google Scholar
  3. Arjmandi, M., Otón, M., Artés, F., Artés-Hernández, F., Gómez, P. A., & Aguayo, E. (2017). Microwave flow and conventional heating effects on the physicochemical properties, bioactive compounds and enzymatic activity of tomato puree. Journal of the Science of Food and Agriculture, 97(3), 984–990.CrossRefGoogle Scholar
  4. Benlloch-Tinoco, M., Martínez-Navarrete, N., & Rodrigo, D. (2014). Impact of temperature on lethality of kiwifruit puree pasteurization by thermal and microwave processing. Food Control, 35(1), 22–25.CrossRefGoogle Scholar
  5. Carvalho, A. S. L., Melo, E. P., Ferreira, B. S., Neves-Petersen, M. T., Petersen, S. B., & Aires-Barros, M. R. (2003). Heme and pH-dependent stability of an anionic horseradish peroxidase. Archives of Biochemistry and Biophysics, 415(2), 257–267.CrossRefGoogle Scholar
  6. Cinquanta, L., Albanese, D., Cuccurullo, G., & Di Matteo, M. (2010). Effect on orange juice of batch pasteurization in an improved pilot-scale microwave oven. Journal of Food Science, 75(1), E46–E50.CrossRefGoogle Scholar
  7. Denès, J. M., Baron, A., & Drilleau, J. F. (2000). Purification, properties and heat inactivation of pectin methylesterase from apple (cv Golden Delicious). Journal of the Science of Food and Agriculture, 80(10), 1503–1509.CrossRefGoogle Scholar
  8. Dubey, A., Diwakar, S. K., Rawat, S. K., Kumar, P., Batra, N., Joshi, A., & Singh, J. (2007). Characterization of ionically bound peroxidases from apple (Mallus pumilus) fruits. Preparative Biochemistry & Biotechnology, 37(1), 47–58.CrossRefGoogle Scholar
  9. Falguera, V., Gatius, F., Ibarz, A., & Barbosa-Cánovas, G. V. (2013). Kinetic and multivariate analysis of polyphenol oxidase inactivation by high pressure and temperature processing in apple juices made from six different varieties. Food and Bioprocess Technology, 6(9), 2342–2352.CrossRefGoogle Scholar
  10. Gibriel, A. Y., El-Sahrigi, A. F., Kandil, S. H., El-Mansy, A., & H. (1978). Effect of pH, sodium chloride and sucrose on heat-inactivation and reactivation of peroxidases in certain foods. Journal of the Science of Food and Agriculture, 29(3), 261–266.CrossRefGoogle Scholar
  11. Guo, Q., Sun, D. W., Cheng, J. H., & Han, Z. (2017). Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology, 67, 236–247.CrossRefGoogle Scholar
  12. Hamoud-Agha, M. M., Curet, S., Simonin, H., & Boillereaux, L. (2013). Microwave inactivation of Escherichia coli K12 CIP 54.117 in a gel medium: experimental and numerical study. Journal of Food Engineering, 116(2), 315–323.CrossRefGoogle Scholar
  13. Hamoud-Agha, M. M., Curet, S., Simonin, H., & Boillereaux, L. (2014). Holding time effect on microwave inactivation of Escherichia coli K12: experimental and numerical investigations. Journal of Food Engineering, 143, 102–113.CrossRefGoogle Scholar
  14. Hebbar, H. U., & Rastogi, N. K. (2012). Microwave heating of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 369–404). San Diego: Academic press.CrossRefGoogle Scholar
  15. Herrero, M. A., Kremsner, J. M., & Kappe, C. O. (2008). Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. The Journal of Organic Chemistry, 73(1), 36–47.CrossRefGoogle Scholar
  16. Huang, H. W., Wu, S. J., Lu, J. K., Shyu, Y. T., & Wang, C. Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8.CrossRefGoogle Scholar
  17. Krapfenbauer, G., Kinner, M., Gössinger, M., Schönlechner, R., & Berghofer, E. (2006). Effect of thermal treatment on the quality of cloudy apple juice. Journal of Agricultural and Food Chemistry, 54(15), 5453–5460.CrossRefGoogle Scholar
  18. Latorre, M. E., Bonelli, P. R., Rojas, A. M., & Gerschenson, L. N. (2012). Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. Journal of Food Engineering, 109(4), 676–684.CrossRefGoogle Scholar
  19. Lopes, L. C., Barreto, M. T., Goncalves, K. M., Alvarez, H. M., Heredia, M. F., de Souza, R. O. M., Cordeiro, Y., Dariva, C., & Fricks, A. T. (2015). Stability and structural changes of horseradish peroxidase: microwave versus conventional heating treatment. Enzyme and Microbial Technology, 69, 10–18.CrossRefGoogle Scholar
  20. Matsui, K. N. (2006). Inativação das enzimas presentes na água de coco verde (Cocos nucifera L.) por processo térmico através de micro-ondas (Doctoral dissertation). Retrieved from Teses USP Database.  https://doi.org/10.11606/T.3.2006-180716.
  21. Matsui, K. N., Gut, J. A. W., De Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88(2), 169–176.CrossRefGoogle Scholar
  22. Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44(7), 1875–1887.CrossRefGoogle Scholar
  23. Rodrigo, C., Rodrigo, M., Alvarruiz, A., & Frigola, A. (1996). Thermal inactivation at high temperatures and regeneration of green asparagus peroxidase. Journal of Food Protection, 59(10), 1065–1071.CrossRefGoogle Scholar
  24. Rougier, C., Prorot, A., Chazal, P., Leveque, P., & Lepratb, P. (2014). Thermal and nonthermal effects of discontinuous microwave exposure (2.45 gigahertz) on the cell membrane of Escherichia coli. Applied and Environmental Microbiology, 80(16), 4832–4841.CrossRefGoogle Scholar
  25. Rouse, A. H., & Atkins, C. D. (1953). Further results from a study on heat inactivation of pectinesterase in citrus juices. Food Technology, 7(6), 221–223.Google Scholar
  26. Shamis, Y., Croft, R., Taube, A., Crawford, R. J., & Ivanova, E. P. (2012). Review of the specific effects of microwave radiation on bacterial cells. Applied Microbiology and Biotechnology, 96(2), 319–325.CrossRefGoogle Scholar
  27. Shazman, A., Mizrahi, S., Cogan, U., & Shimoni, E. (2007). Examining for possible non-thermal effects during heating in a microwave oven. Food Chemistry, 103(2), 444–453.CrossRefGoogle Scholar
  28. Siguemoto, É. S., & Gut, J. A. W. (2017). Validation of spectrophotometric microplate methods for polyphenol oxidase and peroxidase activities analysis in fruits and vegetables. Food Science and Technology, 37(s1), 148–153.CrossRefGoogle Scholar
  29. Siguemoto, É. S., Gut, J. A. W., Martinez, A., & Rodrigo, D. (2018). Inactivation kinetics of Escherichia coli O157:H7 and Listeria monocytogenes in apple juice by microwave and conventional thermal processing. Innovative Food Science & Emerging Technologies, 45, 84–91.CrossRefGoogle Scholar
  30. Sinha, N. K. (2006). Apples. In Y. H. Hui (Ed.), Handbook of fruits and fruit processing (pp. 265–278). Hoboken: Blackwell Publishing.Google Scholar
  31. Stratakos, A. C., Delgado-Pando, G., Linton, M., Patterson, M. F., & Koidis, A. (2016). Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chemistry, 190, 622–628.CrossRefGoogle Scholar
  32. Tajchakavit, S., & Ramaswamy, H. S. (1995). Continuous-flow microwave heating of orange juice: evidence of nonthermal effects. Journal of Microwave Power and Electromagnetic Energy, 30(3), 141–148.CrossRefGoogle Scholar
  33. Tajchakavit, S., & Ramaswamy, H. S. (1997). Thermal vs. microwave inactivation kinetics of pectin methylesterase in orange juice under batch mode heating conditions. LWT - Food Science and Technology, 30(1), 85–93.CrossRefGoogle Scholar
  34. Tajchakavit, S., Ramaswamy, H. S., & Fustier, P. (1998). Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating. Food Research International, 31(10), 713–722.CrossRefGoogle Scholar
  35. Tang, J. (2015). Unlocking potentials of microwaves for food safety and quality. Journal of Food Science, 80(8), E1776–E1793.CrossRefGoogle Scholar
  36. Thongsook, T., & Barrett, D. M. (2005). Heat inactivation and reactivation of broccoli peroxidase. Journal of Agricultural and Food Chemistry, 53(8), 3215–3222.CrossRefGoogle Scholar
  37. Tribess, T. B., & Tadini, C. C. (2006). Inactivation kinetics of pectin methylesterase in orange juice as a function of pH and temperature/time process conditions. Journal of the Science of Food and Agriculture, 86(9), 1328–1335.CrossRefGoogle Scholar
  38. Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65(3), 249–259.CrossRefGoogle Scholar
  39. Wilińska, A., Rodrigues, A. S. F., Bryjak, J., & Polakovič, M. (2008). Thermal inactivation of exogenous pectin methylesterase in apple and cloudberry juices. Journal of Food Engineering, 85(3), 459–465.CrossRefGoogle Scholar
  40. Xu, B., Wang, L. K., Miao, W. J., Wu, Q. F., Liu, Y. X., Sun, Y., & Gao, C. (2016). Thermal versus microwave inactivation kinetics of lipase and lipoxygenase from wheat germ. Journal of Food Process Engineering, 39(3), 247–255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Érica Sayuri Siguemoto
    • 1
  • Letícia Jyo Pereira
    • 1
  • Jorge Andrey Wilhelms Gut
    • 1
    • 2
  1. 1.Department of Chemical Engineering, Escola PolitécnicaUniversity of São PauloSão PauloBrazil
  2. 2.FoRC - Food Research CenterUniversity of São PauloSão PauloBrazil

Personalised recommendations