Skip to main content
Log in

Temperature-Controlled Pulsed Light Treatment: Impact on Aflatoxin Level and Quality Parameters of Peanut Oil

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Peanuts are an economically significant crop that is commonly used for edible oil production; however, they are prone to contamination by aflatoxin (AFT)-producing fungi. Common methods to treat edible oils for AFTs often utilize high temperatures (> 100 °C) to thermally degrade the toxins. However, high temperatures often negatively impact product quality. In this study, pulsed light (PL) was assessed as a possible method to degrade AFTs in peanut oil. A pilot-scale PL applicator was used to treat 5-mL samples of peanut oil of 10 mm thick. Samples were treated for 1 to 10 min with or without temperature reduction (TR). The sample containers were placed in an ice water bath to mitigate increases in oil temperatures for the TR samples. The physical, color, and chemical quality parameters (peroxide value, free fatty acid, acidity value, and oxidative stability index (OSI)) of the oil were assessed in comparison to controls. Results show that significant AFT destruction was achieved using PL. There was a significant difference between reduction achieved when TR was employed, likely due to the combined effect of photochemical and thermal treatment. TR samples treated for 400 s experienced an AFT reduction of 48.4%, while those treated 600 and 800 s achieved 55.6 and 78%, respectively. The samples treated with TR showed lower quality degradation when compared to peanut oil samples treated without TR for equivalent treatment times. Using TR, PL resulted in a significant reduction of AFT, without losses in quality typically associated with thermal methods. At industrial scale, PL may offer an economical treatment of AFT-contaminated oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeeko, K. A., & Ajibola, O. O. (1990). Processing factors affecting yield and quality of mechanically expressed groundnut oil. Journal of Agricultural Engineering Research, 45, 31–43.

    Article  Google Scholar 

  • Akbas, M. Y., & Ozdemir, M. (2006). Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachios. Journal of the Science of Food and Agriculture, 86(13), 2099–2104.

    Article  CAS  Google Scholar 

  • Anderson, J. G., Rowan, N. J., Macgregor, S. J., Fouracre, R. A., Farish, O., & Member, S. (2000). Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Transactions on Plasma Science, 28(1), 83–88.

    Article  Google Scholar 

  • Aparicio, R., Roda, L., Albi, M. A., & Gutiérrez, F. (1999). Effect of various compounds on virgin olive oil stability measured by Rancimat. Journal of Agricultural and Food Chemistry, 47(10), 4150–4155. https://doi.org/10.1021/jf9812230.

    Article  CAS  PubMed  Google Scholar 

  • Banu, N., & Muthumary, J. (2010). Taxol as chemical detoxificant of aflatoxin produced by aspergillus flavus isolated from sunflower seed. Health, 2(7), 789–795. https://doi.org/10.4236/health.2010.27119.

    Article  Google Scholar 

  • Bayram, M. (2006). MEAT colour and textural attributes of sucuk during ripening. Meat Science, 73(2), 344–350. https://doi.org/10.1016/j.meatsci.2006.01.001.

    Article  PubMed  Google Scholar 

  • Bendini, A., Gallina Toschi, T., & Lercker, G. (2001). Determinazione dell’attività antiossidante di estratti vegetali mediante oxidative stability instrument (OSI). Ind. Aliment, 40, 525–529.

    CAS  Google Scholar 

  • Bolton, G. E., & Sanders, T. H. (2002). Effect of roasting oil composition on the stability of roasted high-oleic peanuts. Journal of the American Oil Chemists' Society, 79(2), 129–132.

    Article  CAS  Google Scholar 

  • Boskou, D. (1999). Non-nutrient antioxidants and stability of frying oils (pp. 183-204). Lancaster: Technomic Publishing CO., INC.

    Google Scholar 

  • Chen, Z., Zhu, C., Zhang, Y., Niu, D., & Du, J. (2010). Postharvest biology and technology effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biology and Technology, 58(3), 232–238. https://doi.org/10.1016/j.postharvbio.2010.06.004.

    Article  CAS  Google Scholar 

  • Chen, R., Ma, F., Li, P., Zhang, W., Ding, X., & Zhang, Q. (2014). Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chemistry, 146, 284–288. https://doi.org/10.1016/j.foodchem.2013.09.059.

    Article  CAS  PubMed  Google Scholar 

  • Chu, Y., & Hsu, H. (1999). Effects of antioxidants on peanut oil stability. Food Chemistry, 66(1), 29–34.

    Article  CAS  Google Scholar 

  • Creppy, E. E. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters, 127(1–3), 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Devlieghere, F., Bonduelle, V., Debevere, J., & Go, V. M. (2005). Factors affecting the inactivation of micro-organisms by intense light pulses. Journal of Applied Microbiology, 99(3), 460–470. https://doi.org/10.1111/j.1365-2672.2005.02641.x.

    Article  PubMed  Google Scholar 

  • Ding, X., Li, P., Bai, Y., & Zhou, H. (2012). A flatoxin B 1 in post-harvest peanuts and dietary risk in China. Food Control, 23(1), 143–148. https://doi.org/10.1016/j.foodcont.2011.06.026.

    Article  CAS  Google Scholar 

  • Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., & Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: a review. Canadian Journal of Microbiology, 53(7), 813–821. https://doi.org/10.1139/W07-042.

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt, L. E. O. A., & Regional, S. (1971). Control and removal of aflatoxin. Journal of the American Oil Chemists’ Society, 48(10), 605–610.

    Article  CAS  PubMed  Google Scholar 

  • Hunterlab. (2001). HunterLab presents the basics of color perception and measurement. Hunter Lab.

  • Jun, S., Irudayaraj, J., Demirci, A., & Geiser, D. (2003). Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores. International Journal of Food Science & Technology, 38(8), 883–888.

    Article  CAS  Google Scholar 

  • Kabak, B., Dobson, A. D., & Var, I. I. L. (2006). Strategies to prevent mycotoxin contamination of food and animal feed: a review. Critical Reviews in Food Science and Nutrition, 46(8), 593–619. https://doi.org/10.1080/10408390500436185.

    Article  CAS  PubMed  Google Scholar 

  • Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., & Saydut, A. (2009). Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34(5), 1257–1260. https://doi.org/10.1016/j.renene.2008.10.002.

    Article  CAS  Google Scholar 

  • Krishnamurthy, K., Demirci, A. L. I., & Irudayaraj, J. (2004). Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. Journal of Food Protection, 67(5), 1027–1030.

    Article  PubMed  Google Scholar 

  • Liu, R., Jin, Q., Huang, J., Liu, Y., Wang, X., Mao, W., & Wang, S. (2011a). Photodegradation of aflatoxin B1 in peanut oil. European Food Research and Technology, 232(5), 843–849. https://doi.org/10.1007/s00217-011-1452-6.

    Article  CAS  Google Scholar 

  • Liu, X., Jin, Q., Liu, Y., Huang, J., Wang, X., Mao, W., & Wang, S. (2011b). Changes in volatile compounds of peanut oil during the roasting process for production of aromatic roasted peanut oil. Journal of Food Science, 76(3), 404–412. https://doi.org/10.1111/j.1750-3841.2011.02073.x.

    Article  CAS  Google Scholar 

  • Marquenie, D., Geeraerd, A. H., Lammertyn, J., & Soontjens, C. (2003). Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International Journal of Food Microbiology, 85(1–2), 185–196. https://doi.org/10.1016/S0168-1605(02)00538-X.

    Article  CAS  PubMed  Google Scholar 

  • Nikkhah, A., Khojastehpour, M., Emadi, B., & Taheri-rad, A. (2015). Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92, 84–90. https://doi.org/10.1016/j.jclepro.2014.12.048.

    Article  CAS  Google Scholar 

  • Oms-oliu, G., Martín-belloso, O., & Soliva-fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3(1), 13–23. https://doi.org/10.1007/s11947-008-0147-x.

    Article  Google Scholar 

  • Özcan, M. (2003). Antioxidant activities of rosemary, sage, and sumac extracts and their combinations on stability of natural peanut oil. Journal of Medicinal Food, 6(3), 267–270.

    Article  CAS  PubMed  Google Scholar 

  • Ozer, N. P., & Demirci, A. (2006). Original article Inactivation of Escherichia coli O157 : H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. International Journal of Food Science & Technology, 41(4), 354–360. https://doi.org/10.1111/j.1365-2621.2005.01071.x.

    Article  CAS  Google Scholar 

  • Passone, M. A., Resnik, S., & Etcheverry, M. G. (2007). Antiaflatoxigenic property of food grade antioxidants under different conditions of water activity in peanut grains. International Journal of Food Microbiology, 118(1), 8–14.

    Article  CAS  PubMed  Google Scholar 

  • Pataro, G., Muñoz, A., Palgan, I., Noci, F., Ferrari, G., & Lyng, J. G. (2011). Bacterial inactivation in fruit juices using a continuous flow pulsed light (PL) system. Food Research International, 44(6), 1642–1648. https://doi.org/10.1016/j.foodres.2011.04.048.

    Article  CAS  Google Scholar 

  • Qing, S., Guo, W., Huang, Q., & Peng, Y. (2015). Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. European Food Research and Technology, 241(1), 103–113. https://doi.org/10.1007/s00217-015-2439-5.

    Article  CAS  Google Scholar 

  • Ragaert, P., Debevere, J., & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science & Technology, 18(9), 464–473.

    Article  CAS  Google Scholar 

  • Rao, Y., Xiang, B., Zhou, X., Wang, Z., Xie, S., & Xu, J. (2009). Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry. Journal of Food Engineering, 93(2), 249–252. https://doi.org/10.1016/j.jfoodeng.2009.01.023.

    Article  Google Scholar 

  • Regional, S., Odeans, N., & Foods, V. D. B. (1992). Temperature effects on the determination of oxidative stability with the Metrohm Rancimat. Journal of the American Oil Chemists Society, 69(6), 525–527.

    Article  Google Scholar 

  • Sis, R. A. A., Arrionuevo, D. A. L. B., Iorda, L. A. M. G., Ores, M. A. L. N., & Ldao, M. A. A. A. (2005). Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina. Journal of Agricultural and Food Chemistry, 53(23), 9274–9280.

    Article  CAS  Google Scholar 

  • Tan, C. P., Man, Y. B. C., Selamat, J., & Yusoff, M. S. A. (2002). Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chemistry, 76(3), 385–389.

    Article  CAS  Google Scholar 

  • Towns, K., Nyirahakizimana, H., Mwamburi, L., Wakhisi, J., Mutegi, C. K., Christie, M. E., et al. (2013). Occurrence of aspergillus species and aflatoxin contamination in raw and roasted peanuts from formal and informal markets in Eldoret and Kericho towns, Kenya. Advances in Microbiology, 3(4), 333–342. https://doi.org/10.4236/aim.2013.34047.

    Article  CAS  Google Scholar 

  • Tripathi, S., & Mishra, H. N. (2011). Modeling and optimization of enzymatic degradation of aflatoxin B1 (AFB 1) in red chili powder using response surface methodology. Food and Bioprocess Technology, 4(5), 770–780. https://doi.org/10.1007/s11947-009-0216-9.

    Article  CAS  Google Scholar 

  • Wang, B., Mahoney, N. E., Pan, Z., Khir, R., & Wu, B. (2016). Effectiveness of pulsed light treatment for degradation and detoxi fi cation of aflatoxin B 1 and B2 in rough rice and rice bran. Food Control, 59, 461–467. https://doi.org/10.1016/j.foodcont.2015.06.030.

    Article  CAS  Google Scholar 

  • Yu, J., Ahmedna, M., & Goktepe, I. (2007). Food chemistry peanut protein concentrate: production and functional properties as affected by processing. Food Chemistry, 103(1), 121–129. https://doi.org/10.1016/j.foodchem.2006.08.012.

    Article  CAS  Google Scholar 

  • Zeng, X., Han, Z., & Zi, Z. (2010). Effects of pulsed electric field treatments on quality of peanut oil. Food Control, 21(5), 611–614. https://doi.org/10.1016/j.foodcont.2009.09.004.

    Article  CAS  Google Scholar 

  • Zhang, J., Liang, S., Duan, J., Wang, J., Chen, S., Cheng, Z., & Zhang, Q. (2012a). De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 13(1), 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Xiong, K., Tatsumi, E., Li, L., & Liu, H. (2012b). Elimination of aflatoxin B 1 in peanuts by acidic electrolyzed oxidizing water. Food Control, 27(1), 16–20. https://doi.org/10.1016/j.foodcont.2012.02.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Food Science and Human Nutrition Department (FSHN) at the University of Florida for providing the Pulsed UV-light system. The authors also are thankful for all faculty and staff in FSHN Department for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. MacIntosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuagela, M.O., Iqdiam, B.M., Baker, G.L. et al. Temperature-Controlled Pulsed Light Treatment: Impact on Aflatoxin Level and Quality Parameters of Peanut Oil. Food Bioprocess Technol 11, 1350–1358 (2018). https://doi.org/10.1007/s11947-018-2105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2105-6

Keywords

Navigation