Food and Bioprocess Technology

, Volume 11, Issue 6, pp 1222–1229 | Cite as

Enhancement of Bioactive Compounds and Antioxidant Activities of Olive (Olea europaea L.) Leaf Extract by Instant Controlled Pressure Drop

  • Sameh Mkaouar
  • Fatma Krichen
  • Neila Bahloul
  • Karim Allaf
  • Nabil Kechaou
Original Paper


In this work, the effect of Détente Instantanée Contrôlée (DIC) (French for instant controlled pressure drop) on the total polyphenol, flavonoids, α-tocopherol contents, and antioxidant activities of olive leaves was studied. Olive leaf extracts were pre-treated at one cycle DIC under 0.1 MPa pressure for 11 s and followed by an extraction with 95% ethanol at 55 °C during 3 h. The phenolic compounds, flavonoïds, oleuropein, and α-tocopherol contents were determined, showing 66.63 mg gallic acid equivalent (GAE)/g db, 12 mg catechin equivalent (CE)/g db, 43.9 mg/g db, and 0.15 mg/g db for the untreated leaves against 239.37 mg GAE/g db, 28 mg CE/g db, 70.3 mg/g db, and 0.59 mg/g db for DIC-treated leaves, respectively. Therefore, DIC allows more availability of bioactive compounds contributing to a high antiradical activity (DPPH) compared to a synthetic antioxidant butylated hydroxytoluene (BHT). Both extracts showed a total antioxidant capacity (method of phosphomolybdenum) greater than that of the standard BHT. Likewise, both extracts have a reducing power (FRAP test) significant concentration-dependent. The DIC-treated leaves showed a higher antioxidant capacity compared to that of untreated leaves. Thus, DIC could be an effective treatment to promote the extraction of bioactive molecules of high antioxidant activities from olive leaves.


Olive leaves Instant controlled pressure drop Phenolic compounds Antioxidant activities Oleuropein α-Tocopherol 



The authors gratefully acknowledge the “Conditionnement des Huiles d’Olive (CHO),” Sfax, Tunisia, for HPLC analysis of tocopherols and “Abcar-DIC” PROCESS SAS, La Rochelle, France, for DIC treatments.


  1. Ahmad-Qasem, M. H., Cánovas, J., Barrajón-Catalán, E., Micol, V., Cárcel, J. A., & García-Pérez, J. V. (2013). Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science & Emerging Technologies., 17, 120–129.CrossRefGoogle Scholar
  2. Allaf, T., Tomao, V., Ruiz, K., & Chemat, F. (2013). Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants. Ultrasonics Sonochemistry., 20(1), 239–246.CrossRefGoogle Scholar
  3. Amor, B. B., Lamy, C., Andre, P., & Allaf, K. (2008). Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosia purpurea seeds. Journal of Chromatography A., 1213(2), 118–124.CrossRefGoogle Scholar
  4. Ben Amor, B., & Allaf, K. (2009). Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from Malaysian Roselle (Hibiscus sabdariffa). Food Chemistry., 115(3), 820–825.CrossRefGoogle Scholar
  5. Ben Mansour, M., Balti, R., Rabaoui, L., Bougatef, A., & Guerfel, M. (2013). Chemical composition, angiotensin I-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil from south Tunisian Ajuga pseudoiva Rob. Lamiaceae. Process Biochemistry., 48(4), 723–729.CrossRefGoogle Scholar
  6. Ben Salah M, Abdelmelek H & Abderraba M (2012) Study of phenolic composition and biological activities assessment of olive leaves from different varieties grown in Tunisia. Medicinal Chemistry.Google Scholar
  7. Benavente-Garcıa, O., Castillo, J., Lorente, J., Ortuno, A., & Del Rio, J. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry., 68(4), 457–462.CrossRefGoogle Scholar
  8. Berka-Zougali, B., Hassani, A., Besombes, C., & Allaf, K. (2010). Extraction of essential oils from Algerian myrtle leaves using instant controlled pressure drop technology. Journal of Chromatography A., 1217(40), 6134–6142.CrossRefGoogle Scholar
  9. Besombes, C., Berka-Zougali, B., & Allaf, K. (2010). Instant controlled pressure drop extraction of lavandin essential oils: fundamentals and experimental studies. Journal of Chromatography A., 1217(44), 6807–6815.CrossRefGoogle Scholar
  10. Botsoglou, E., Govaris, A., Fletouris, D., & Botsoglou, N. (2012). Lipid oxidation of stored eggs enriched with very long chain n−3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation. Food Chemistry., 134(2), 1059–1068.CrossRefGoogle Scholar
  11. Boudhrioua, N., Bahloul, N., Ben Slimen, I., & Kechaou, N. (2009). Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Industrial Crops and Products, 29(2–3), 412–419.CrossRefGoogle Scholar
  12. Bourgou, S., Ksouri, R., Bellila, A., Skandrani, I., Falleh, H., & Marzouk, B. (2008). Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes Rendus Biologies., 331(1), 48–55.CrossRefGoogle Scholar
  13. Chung, Y.-C., Chang, C.-T., Chao, W.-W., Lin, C.-F., & Chou, S.-T. (2002). Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry., 50(8), 2454–2458.CrossRefGoogle Scholar
  14. De Lucas, A., de la Ossa, E. M., Rincón, J., Blanco, M., & Gracia, I. (2002). Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. The Journal of Supercritical Fluids., 22(3), 221–228.CrossRefGoogle Scholar
  15. Devi, H. P., Mazumder, P., & Devi, L. P. (2015). Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts. Toxicology Reports., 2, 423–428.CrossRefGoogle Scholar
  16. Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry., 50(10), 3010–3014.CrossRefGoogle Scholar
  17. El Sedef, N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition reviews., 67(11), 632–638.CrossRefGoogle Scholar
  18. Ferreira, I. C. F. R., Barros, L., Soares, M. E., Bastos, M. L., & Pereira, J. A. (2007). Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry., 103(1), 188–195.CrossRefGoogle Scholar
  19. Hall, C. (2001). Sources of natural antioxidants: oilseeds, nuts, cereals, legumes, animal products and microbial sources. Antioxidants in Food, 180–189.Google Scholar
  20. Hayes, J. E., Allen, P., Brunton, N., O’Grady, M. N., & Kerry, J. P. (2011). Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chemistry., 126(3), 948–955.CrossRefGoogle Scholar
  21. Heimler, D., Pieroni, A., Tattini, M., & Cimato, A. (1992). Determination of flavonoids, flavonoid glycosides and biflavonoids in Olea europaea L. leaves. Chromatographia, 33(7–8), 369–373.CrossRefGoogle Scholar
  22. Herrero, M., Temirzoda, T. N., Segura-Carretero, A., Quirantes, R., Plaza, M., & Ibañez, E. (2011). New possibilities for the valorization of olive oil by-products. Journal of Chromatography A., 1218(42), 7511–7520.CrossRefGoogle Scholar
  23. Ignat, I., Volf, I., & Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry., 126(4), 1821–1835.CrossRefGoogle Scholar
  24. ISO 9936,(2006 F) Corps gras d’origines animale et végétale - Détermination des teneurs en tocophérols et en tocotriénols par chromatographie en phase liquide à haute performance. Norme internationale.17 pages.Google Scholar
  25. Japón-Luján, R., Luque-Rodríguez, J. M., & Luque de Castro, M. D. (2006). Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A., 1108(1), 76–82.CrossRefGoogle Scholar
  26. Japón-Luján, R., & Luque de Castro, M. D. (2006). Superheated liquid extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A., 1136(2), 185–191.CrossRefGoogle Scholar
  27. Laguerre, M., Lόpez Giraldo, L., Piombo, G., Figueroa-Espinoza, M., Pina, M., Benaissa, M., Combe, A., Rossignol Castera, A., Lecomte, J., & Villeneuve, P. (2009). Characterization of olive-leaf phenolics by ESI-MS and evaluation of their antioxidant capacities by the CAT assay. Journal of the American Oil Chemists’ Society., 86(12), 1215–1225.CrossRefGoogle Scholar
  28. Le Floch, F., Tena, M. T., Rı́os, A., & Valcárcel, M. (1998). Supercritical fluid extraction of phenol compounds from olive leaves. Talanta, 46(5), 1123–1130.CrossRefGoogle Scholar
  29. Lee-Huang, S., Zhang, L., Lin Huang, P., Chang, Y.-T., & Huang, P. L. (2003). Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochemical and Biophysical Research Communications., 307(4), 1029–1037.CrossRefGoogle Scholar
  30. Lee, O.-H., & Lee, B.-Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology., 101(10), 3751–3754.CrossRefGoogle Scholar
  31. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews, 4(8), 118–126.CrossRefGoogle Scholar
  32. Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis., 20(2), 125–132.CrossRefGoogle Scholar
  33. Mkaouar, S., Bahloul, N., Gelicus, A., Allaf, K., & Kechaou, N. (2015). Instant controlled pressure drop texturing for intensifying ethanol solvent extraction of olive (Olea europaea) leaf polyphenols. Separation and Purification Technology., 145, 139–146.CrossRefGoogle Scholar
  34. Mkaouar, S., Gelicus, A., Bahloul, N., Allaf, K., & Kechaou, N. (2016). Kinetic study of polyphenols extraction from olive (Olea europaea L.) leaves using instant controlled pressure drop texturing. Separation and Purification Technology., 161, 165–171.CrossRefGoogle Scholar
  35. Mohamed, R., Pineda, M., & Aguilar, M. (2007). Antioxidant capacity of extracts from wild and crop plants of the Mediterranean region. Journal of Food Science., 72(1), S059–S063.CrossRefGoogle Scholar
  36. Moudache, M., Colon, M., Nerín, C., & Zaidi, F. (2016). Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chemistry, 212(Supplement C), 521–527.CrossRefGoogle Scholar
  37. Mujić, I., Živković, J., Nikolić, G., Vidović, S., Trutić, N., Kosić, U., Jokić, S., & Ruznić, A. (2011). Phenolic compounds in olive leaf extract as a source of useful antioxidants. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam., 6(3–4), 129–133.Google Scholar
  38. Namir, M., Elzahar, K., Ramadan, M. F., & Allaf, K. (2017). Cactus pear peel snacks prepared by instant pressure drop texturing: effect of process variables on bioactive compounds and functional properties. Journal of Food Measurement and Characterization., 11(2), 388–400.CrossRefGoogle Scholar
  39. Pereira, A., Ferreira, I., Marcelino, F., Valentão, P., Andrade, P., Seabra, R., Estevinho, L., Bento, A., & Pereira, J. (2007). Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules, 12(5), 1153–1162.CrossRefGoogle Scholar
  40. Perrinjaquet-Moccetti, T., Busjahn, A., Schmidlin, C., Schmidt, A., Bradl, B., & Aydogan, C. (2008). Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytotherapy Research, 22(9), 1239–1242.CrossRefGoogle Scholar
  41. Poudyal, H., Campbell, F., & Brown, L. (2010). Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. The Journal of nutrition., 140(5), 946–953.CrossRefGoogle Scholar
  42. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.CrossRefGoogle Scholar
  43. Rabiei, Z., Bigdeli, M. R., Rasoulian, B., Ghassempour, A., & Mirzajani, F. (2012). The neuroprotection effect of pretreatment with olive leaf extract on brain lipidomics in rat stroke model. Phytomedicine, 19(10), 940–946.CrossRefGoogle Scholar
  44. Rafiee, Z., Jafari, S., Alami, M., & Khomeiri, M. (2012). Antioxidant effect of microwave-assisted extracts of olive leaves on sunflower oil. Journal of Agricultural Science and Technology., 14, 1497–1509.Google Scholar
  45. Rahmanian, N., Jafari, S. M., & Wani, T. A. (2015). Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends in Food Science & Technology., 42(2), 150–172.CrossRefGoogle Scholar
  46. Ryan, D., Antolovich, M., Prenzler, P., Robards, K., & Lavee, S. (2002). Biotransformations of phenolic compounds in Olea europaea L. Scientia Horticulturae., 92(2), 147–176.CrossRefGoogle Scholar
  47. Şahin, S., Samli, R., Tan, A. S. B., Barba, F. J., Chemat, F., Cravotto, G., & Lorenzo, J. M. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules, 22(7), 1056.CrossRefGoogle Scholar
  48. Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., & Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry., 89(2), 191–198.CrossRefGoogle Scholar
  49. Somova, L. I., Shode, F. O., Ramnanan, P., & Nadar, A. (2003). Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology, 84(2–3), 299–305.CrossRefGoogle Scholar
  50. Souilem, S., Fki, I., Kobayashi, I., Khalid, N., Neves, M. A., Isoda, H., Sayadi, S., & Nakajima, M. (2017). Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food and Bioprocess Technology., 10(2), 229–248.CrossRefGoogle Scholar
  51. Tapas, A., Sakarkar, D., & Kakde, R. (2008). Flavonoids as nutraceuticals: a review. Tropical Journal of Pharmaceutical Research., 7(3), 1089–1099.CrossRefGoogle Scholar
  52. Tsao, R., & Yang, R. (2003). Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A., 1018(1), 29–40.CrossRefGoogle Scholar
  53. Tsimogiannis, D. I., & Oreopoulou, V. (2006). The contribution of flavonoid C-ring on the DPPH free radical scavenging efficiency. A kinetic approach for the 3′,4′-hydroxy substituted members. Innovative Food Science & Emerging Technologies, 7(1–2), 140–146.CrossRefGoogle Scholar
  54. Visioli, F., & Galli, C. (2002). Biological properties of olive oil phytochemicals. Critical reviews in food science and nutrition., 42(3), 209–221.CrossRefGoogle Scholar
  55. Visioli, F., Poli, A., & Gall, C. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal Research Reviews., 22(1), 65–75.CrossRefGoogle Scholar
  56. Xing, R., Yu, H., Liu, S., Zhang, W., Zhang, Q., Li, Z., & Li, P. (2005). Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorganic & Medicinal Chemistry., 13(4), 1387–1392.CrossRefGoogle Scholar
  57. Xynos, N., Papaefstathiou, G., Psychis, M., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A.-L. (2012). Development of a green extraction procedure with super/subcritical fluids to produce extracts enriched in oleuropein from olive leaves. The Journal of Supercritical Fluids., 67, 89–93.CrossRefGoogle Scholar
  58. Yıldırım, A., Mavi, A., & Kara, A. A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry., 49(8), 4083–4089.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sameh Mkaouar
    • 1
  • Fatma Krichen
    • 2
  • Neila Bahloul
    • 1
  • Karim Allaf
    • 3
  • Nabil Kechaou
    • 1
  1. 1.Groupe de Recherche en Génie des Procédés Agroalimentaires, Laboratoire de Recherche en Mécanique des Fluides Appliquée—Génie des Procédés—Environnement, Ecole Nationale d’Ingénieurs de SfaxUniversité de SfaxSfaxTunisia
  2. 2.Laboratoire d’amélioration des plantes et valorisation des agroressources, Ecole Nationale d’Ingénieurs de SfaxUniversité de SfaxSfaxTunisia
  3. 3.Laboratory of Engineering Science for Environment LaSIE – UMR - CNRS 7356University of La RochelleLa RochelleFrance

Personalised recommendations