Food and Bioprocess Technology

, Volume 11, Issue 6, pp 1188–1198 | Cite as

Utility of Blended Polymeric Formulations Containing Cellulose Nanofibrils for Encapsulation and Controlled Release of Sweet Orange Essential Oil

  • Hugo Junior Barboza de Souza
  • Regiane Victória de Barros Fernandes
  • Soraia Vilela Borges
  • Pedro Henrique Campelo Felix
  • Lívia Cássia Viana
  • Amanda Maria Teixeira Lago
  • Diego Alvarenga Botrel
Original Paper


The characteristics and encapsulating potential of blended polymeric formulations containing gum arabic (GA), maltodextrin (MD), and cellulose nanofibrils (CNF) for microencapsulation of sweet orange essential oil were evaluated in this study. CNF acted as a thickener, increasing emulsion viscosity. The droplet size was affected by the partial replacement of GA in the formulations without CNF; however, the presence of CNF contributed to decreasing the droplet size. CNF-containing formulations had the best encapsulation efficiency. Images obtained by microscopy showed no cracks on the surface of the microparticles. CNF-containing formulations released more essential oil at 25 °C and presented different behaviors when compared to formulations without CNF at 45 °C. The presence of CNF in the wall material formulations was associated with higher encapsulation efficiency of the particles containing essential oil produced by the spray drying.


Gum arabic Maltodextrin Cellulose Spray drying Oil retention 



The authors thank FAPEMIG (Minas Gerais State Foundation for Research Development, Brazil) (CAG-PPM-00318-11) and CNPq (National Council for Scientific and Technological Development, Brazil) (grant number 448530/2014-7) for the financial support; the Laboratory of Electronic Microscopy and Ultra-structural Analysis of the Federal University of Lavras, Brazil, and the Electronic Microscopy Center, Sector of Biological Sciences, Federal University of Paraná, Brazil, for support on the microscopic analysis; and the Laboratory of Wood and Pulp Chemistry and Paper of the Federal University of Paraná, Brazil, for providing the cellulose nanofibrils.


  1. Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresource Technology, 99(6), 1664–1671.CrossRefGoogle Scholar
  2. Assis, L. M. de, Zavareze, E. da R., Prentice-Hernández, C., & Souza-Soares, L. A. De. (2012). Characteristics of nanoparticles and their potential applications in foods. Brazilian Journal of Food Technology, 15(2), 99–109.Google Scholar
  3. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS—AOAC. (2007). Official methods of analysis. (485, Ed.) (17th ed.). Maryland: AOAC.Google Scholar
  4. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils—a review. Food and Chemical Toxicology, 46(2), 446–475.CrossRefGoogle Scholar
  5. Baranauskiené, R., Venskutonis, P. R., Dewettinck, K., & Verhe, R. (2006). Properties oforegano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Research International, 39(4), 413–425.CrossRefGoogle Scholar
  6. Buffo, R. A., Probst, K., Zehentbauer, G., Luo, Z., & Reineccius, G. A. (2002). Effects of agglomeration on the properties of spray-dried encapsulated flavours. Flavour and Fragrance Journal, 17(4), 292–299.CrossRefGoogle Scholar
  7. Burgess, D. J., Sahin, N., & Sahin, O. N. (1998). Influence of protein emulsifier interfacial properties on oil-in-water emulsion stability. Pharmaceutical Development and Technology, 3(1), 21–29.CrossRefGoogle Scholar
  8. Cai, Y. Z. Z., & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.CrossRefGoogle Scholar
  9. Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems - A review. Food Control, 54, 111–119.Google Scholar
  10. Cano-Chauca, M., Stringheta, P. C. C., Ramos, A. M. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428.CrossRefGoogle Scholar
  11. Carmona, P. A. O., Tonon, R. V., da Cunha, R. L., & Hubinger, M. D. (2013). Influence of emulsion properties on the microencapsulation of orange essential oil by spray drying. Journal of Colloid Science and Biotechnology, 2(2), 130–139.CrossRefGoogle Scholar
  12. Carneiro, H. C. F. F., Tonon, R. V., Grosso, C. R. F. F., & Hubinger, M. D. M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.Google Scholar
  13. Chevalier, Y., & Bolzinger, M. A. (2013). Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23–34.CrossRefGoogle Scholar
  14. de Kort, D., Veen, S., Van As, H., Bonn, D., Velikov, K., & Van Duynhoven, J. (2016). Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer. Soft Matter, 12(21), 4739–4744.CrossRefGoogle Scholar
  15. Do, T. K. T., Hadji-Minaglou, F., Antoniotti, S., & Fernandez, X. (2015). Authenticity of essential oils. TrAC Trends in Analytical Chemistry, 66, 146–157.CrossRefGoogle Scholar
  16. Dordevic, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., et al. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452–490.CrossRefGoogle Scholar
  17. Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220–227.CrossRefGoogle Scholar
  18. Fernandes, R. V. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524–532.CrossRefGoogle Scholar
  19. Forny, L., Marabi, A., & Palzer, S. (2011). Wetting, disintegration and dissolution of agglomerated water soluble powders. Powder Technology, 206(1–2), 72–78.CrossRefGoogle Scholar
  20. Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424.CrossRefGoogle Scholar
  21. Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E. E., Ordonnaud, C., Peyrat-Maillard, M. N. N., et al. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35.CrossRefGoogle Scholar
  22. Garcia, L. C., Tonon, R. V., & Hubinger, M. D. (2012). Effect of homogenization pressure and oil load on the emulsion properties and the oil retention of microencapsulated basil essential oil (Ocimum basilicum L.) Drying Technology, 30(13), 1413–1421.CrossRefGoogle Scholar
  23. Gardner, D. J., Oporto, G. S., Mills, R., & Samir, M. A. S. A. (2008). Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22(5–6), 545–567.CrossRefGoogle Scholar
  24. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.CrossRefGoogle Scholar
  25. Habibi, Y., Mahrouz, M., & Vignon, M. R. (2009). Microfibrillated cellulose from the peel of prickly pear fruits. Food Chemistry, 115(2), 423–429.CrossRefGoogle Scholar
  26. Jafari, S. M., Assadpoor, E. M., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835.CrossRefGoogle Scholar
  27. Jowkarderis, L., & Van De Ven, T. G. M. (2015). Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. Carbohydrate Polymers, 123, 416–423.CrossRefGoogle Scholar
  28. Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers, 90(2), 735–764.CrossRefGoogle Scholar
  29. Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955–963.CrossRefGoogle Scholar
  30. Löbmann, K., & Svagan, A. J. (2017). Cellulose nano fibers as excipient for the delivery of poorly soluble drugs. International Journal of Pharmaceutics, 533(1), 285–297.CrossRefGoogle Scholar
  31. Lu, W.-C., Chiang, B.-H., Huang, D.-W., & Li, P.-H. (2014). Skin permeation of d-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification. Ultrasonics Sonochemistry, 21(2), 826–832.CrossRefGoogle Scholar
  32. Madene, A., Jacquot, M., Scher, J. J. J., & Desobry, S. S. S. (2006). Flavour encapsulation and controlled release—a review. International Journal of Food Science and Technology, 41(1), 1–21.CrossRefGoogle Scholar
  33. Maisuthisakul, P., & Gordon, M. H. (2012). Influence of polysaccharides and storage during processing on the properties of mango seed kernel extract (microencapsulation). Food Chemistry, 134(3), 1453–1460.CrossRefGoogle Scholar
  34. Marto, A. F., Dumont, P. J. J., Belgacem, M. N., & Putaux, J. L. (2016). Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow. Royal Society Chemistry, 12, 1721–1735.Google Scholar
  35. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.CrossRefGoogle Scholar
  36. Perdana, J., Fox, M. B., Siwei, C., Boom, R. M., & Schutyser, M. A. I. (2014). Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1. Food Research International, 56, 9–17.CrossRefGoogle Scholar
  37. Phisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. International Food Research Journal, 19(4), 1297–1306.Google Scholar
  38. Rajabi, H., Ghorbani, M., Jafari, S. M., Sadeghi Mahoonak, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327–337.CrossRefGoogle Scholar
  39. Rascón, M. P., Beristain, C. I., García, H. S., Salgado, M. A., Rascón, M. P., Beristain, C. I., et al. (2011). Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum Arabic and soy protein isolate as wall materials. LWT - Food Science and Technology, 44(2), 549–557.CrossRefGoogle Scholar
  40. Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264.CrossRefGoogle Scholar
  41. Rebello, F. D. F. P. (2009). Microencapsulação de ingredientes alimentícios. Revista Agrogeoambiental, 1(3), 134–144.Google Scholar
  42. Silva, E. K., Zabot, G. L., Cazarin, C. B. B., Maróstica, M. R., & Meireles, M. A. A. (2016). Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity. Carbohydrate Polymers, 144, 149–158.CrossRefGoogle Scholar
  43. Soottitantawat, A., Takayama, K., Okamura, K., Muranaka, D., Yoshii, H., Furuta, T., Ohkawarab, M., & Linko, P. (2005). Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Science & Emerging Technologies, 6(2), 163–170.Google Scholar
  44. Tanaka, R., Saito, T., Hänninen, T., Ono, Y., Hakalahti, M., Tammelin, T., & Isogai, A. (2016). Viscoelastic properties of core–shell-structured, hemicellulose-rich nanofibrillated cellulose in dispersion and wet-film states. Biomacromolecules, 17(6), 2104–2111.CrossRefGoogle Scholar
  45. Uekane, T. M., Costa, A. C. P., Pierucci, A. P. T. R., da Rocha-Leão, M. H. M., & Rezende, C. M. (2016). Sulfur aroma compounds in gum Arabic/maltodextrin microparticles. LWT - Food Science and Technology, 70, 342–348.CrossRefGoogle Scholar
  46. Wu, T.-M., & Wu, C.-Y. (2006). Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polymer Degradation and Stability, 91(9), 2198–2204.CrossRefGoogle Scholar
  47. Wu, Y., Zou, L., Mao, J., Huang, J., & Liu, S. (2014). Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohydrate Polymers, 102, 497–503.Google Scholar
  48. Yoshii, H., Soottitantawat, A., Liu, X.-D. D., Atarashi, T., Furuta, T., Aishima, S., et al. (2001). Flavor release from spray-dried maltodextrin/gum arabic or soy matrices as a function of storage relative humidity. Innovative Food Science & Emerging Technologies, 2(1), 55–61.CrossRefGoogle Scholar
  49. Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2011). Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.) Journal of Food Science and Technology, 48(6), 677–684.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hugo Junior Barboza de Souza
    • 1
  • Regiane Victória de Barros Fernandes
    • 2
  • Soraia Vilela Borges
    • 2
  • Pedro Henrique Campelo Felix
    • 3
  • Lívia Cássia Viana
    • 4
  • Amanda Maria Teixeira Lago
    • 2
  • Diego Alvarenga Botrel
    • 1
    • 2
  1. 1.Biomaterials EngineeringFederal University of LavrasLavrasBrazil
  2. 2.Food Science DepartmentFederal University of LavrasLavrasBrazil
  3. 3.Department of Agricultural Engineering and SoilFederal University of AmazonasManausBrazil
  4. 4.Federal University of Tocantins-Campus GurupiGurupiBrazil

Personalised recommendations