Effect of High-Pressure Processing on Quality and Microbiological Properties of a Fermented Beverage Manufactured from Sweet Whey Throughout Refrigerated Storage


The production of fermented beverages is a promising way to valorize by-products of dairy manufacturing. However, the shelf-life of these products is often limited by the post-acidification process that occurs during storage. In this work, we manufactured a fermented beverage from sweet whey by using the starter lactic acid bacteria (SLAB) Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. High-pressure processing (HPP) at 200 MPa for 10 min or 400 MPa for 1 min were applied after manufacturing. The aim of this study was to evaluate the effect of HPP on the quality of the beverage and on the behavior of the SLAB. Both high hydrostatic pressure treatments preserved flavor and texture attributes until 45 days post-HPP, without affecting chromatic parameters. Plate counts for both species were lower in HPP-treated beverages (HB) than in control beverages (CB), although treatment at 200 MPa maintained optimal amounts of total SLAB (6.6–7.9 log CFU/mL). Conversely, quantitative PCR (qPCR) and reverse transcription-qPCR (RT-qPCR) revealed that bacterial DNA or mRNA levels persisted after HPP (> 1.4 × 105 genome or cDNA copies/mL), even upon 400-MPa treatments. As a whole, this study indicated that HPP preserved the quality of the beverage until 45 days post-HPP, which is longer than the shelf-life of conventional fermented beverages obtained from milk. Moreover, our results obtained with these SLAB in a fermented dairy beverage upon HPP extend previous findings regarding the limitations of culture-dependent methods to assess microbial viability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



Biochemical oxygen demand


Control beverages


Complementary DNA


Colony forming units


Threshold cycle


Denaturing gradient gel electrophoresis


HPP-treated beverages


High-pressure processing


International Organization for Standardization


Limit of detection


Messenger RNA


Quantitative PCR


Reverse transcription-qPCR


Standard deviation


Starter lactic acid bacteria


Viable but non-culturable


Whiteness index


  1. Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt—a review. International Journal of Food Microbiology, 149(3), 194–208.

    Article  Google Scholar 

  2. Božanić, R., Barukčić, I., Jakopović, K. L., & Tratnik, L. (2014). Possibilities of whey utilisation. Austin Journal of Nutrition and Food Sciences, 2(7), 1036.

    Google Scholar 

  3. CAA (Argentine Food Code), 2012. Código Alimentario Argentino (Art. 625). Ed. De La Canal & Asociados SRL, Buenos Aires, Argentina.

  4. Chawla, R., Patil, G. R., & Singh, A. K. (2011). High hydrostatic pressure technology in dairy processing: a review. Journal of Food Science and Technology, 48(3), 260–268.

    Article  Google Scholar 

  5. Cocolin, L., Alessandria, V., Dolci, P., Gorra, R., & Rantsiou, K. (2013). Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. International Journal of Food Microbiology, 167(1), 29–43.

    CAS  Article  Google Scholar 

  6. Codex Alimentarius. (2003). Codex-standard 243–2003: Codex standard for fermented milks. http://www.codexalimentarius.net/input/download/standards/400/CXS_243e.pdf

  7. de Ancos, B., Cano, M. P., & Gómez, R. (2000). Characteristics of stirred low-fat yoghurt as affected by high pressure. International Dairy Journal, 10(1-2), 105–111.

    Article  Google Scholar 

  8. Denoya, G. I., Nanni, M. S., Apóstolo, N. M., Vaudagna, S. R., & Polenta, G. A. (2016). Biochemical and microstructural assessment of minimally processed peaches subjected to high-pressure processing: implications on the freshness condition. Innovative Food Science & Emerging Technologies, 36, 212–220.

    CAS  Article  Google Scholar 

  9. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., Robledo, C. W. (2015). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

  10. Diez, A. M., Urso, R., Rantsiou, K., Jaime, I., Rovira, J., & Cocolin, L. (2008). Spoilage of blood sausages morcilla de Burgos treated with high hydrostatic pressure. International Journal of Food Microbiology, 123(3), 246–253.

    CAS  Article  Google Scholar 

  11. Falentin, H., Henaff, N., Le Bivic, P., Deutsch, S. M., Parayre, S., Richoux, R., Sohier, D., Thierry, A., Lortal, S., & Postollec, F. (2012). Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese. Food Microbiology, 29(1), 132–140.

    CAS  Article  Google Scholar 

  12. Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., & Morelli, L. (2005). Should yoghurt cultures be considered probiotic? British Journal of Nutrition, 93(6), 783–786.

    CAS  Article  Google Scholar 

  13. Harte, F., Luedecke, L., Swanson, B., & Barbosa-Canovas, G. V. (2003). Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing. Journal of Dairy Science, 86(4), 1074–1082.

    CAS  Article  Google Scholar 

  14. ISO 22935–2:2009 (IDF 99–2:2009). Milk and milk products—sensory analysis—part 2: recommended methods for sensory evaluation.

  15. Jankowska, A., Reps, A., Proszek, A., & Krasowska, M. (2005). Effect of high pressure on microflora and sensory characteristics of yoghurt. Polish Journal of Food and Nutrition Sciences, 14/55(1), 79–84.

    Google Scholar 

  16. Jankowska, A., Grześkiewicz, A., Wiśniewska, K., & Reps, A. (2012). Examining the possibilities of applying high pressure to preserve yoghurt supplemented with probiotic bacteria. High Pressure Research: An International Journal, 32(3), 339–346.

    CAS  Article  Google Scholar 

  17. Jany, J. L., & Barbier, G. (2008). Culture-independent methods for identifying microbial communities in cheese. Food Microbiology, 25(7), 839–848.

    CAS  Article  Google Scholar 

  18. Krasowska, M., Reps, A., & Jankowska, A. (2005). Effect of high pressures on the activity of selected strains of lactic acid bacteria. Milchwissenschaft, 60, 382–385.

    CAS  Google Scholar 

  19. López-Fandiño, R. (2006). High pressure-induced changes in milk proteins and possible applications in dairy technology. International Dairy Journal, 16(10), 1119–1131.

    Article  Google Scholar 

  20. Martínez-Onandi, N., Castioni, A., San Martín, E., Rivas-Cañedo, A., Nuñez, M., Torriani, S., & Picon, A. (2017). Microbiota of high-pressure-processed serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 241, 298–307.

    Article  Google Scholar 

  21. Miller, D. M., Dudley, E. G., & Roberts, R. F. (2012). Technical note: development of a quantitative PCR method for monitoring strain dynamics during yogurt manufacture. Journal of Dairy Science, 95(9), 4868–4872.

    CAS  Article  Google Scholar 

  22. Overney, A., Jacques-André-Coquin, J., Ng, P., Carpentier, B., Guillier, L., & Firmesse, O. (2016). Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants. International Journal of Food Microbiology, 244, 74–81.

    Article  Google Scholar 

  23. Panesar, P. S., & Kennedy, J. F. (2012). Biotechnological approaches for the value addition of whey. Critical Reviews in Biotechnology, 32(4), 327–348.

    CAS  Article  Google Scholar 

  24. Patel, S. (2015). Emerging trends in nutraceutical applications of whey protein and its derivatives. Journal of Food Science and Technology, 52(11), 6847–6858.

    CAS  Article  Google Scholar 

  25. Pega, J., Rizzo, S., Pérez, C. D., Rossetti, L., Díaz, G., Ruzal, S. M., Nanni, M., & Descalzo, A. M. (2016). Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR. International Journal of Food Microbiology, 232, 117–125.

    CAS  Article  Google Scholar 

  26. Pega, J., Rizzo, S., Rossetti, L., Pérez, C. D., Díaz, G., Descalzo, A. M., & Nanni, M. (2017). Impact of extracellular nucleic acids from lactic acid bacteria on qPCR and RT-qPCR results in dairy matrices: implications for defining molecular markers of cell integrity. LWT-Food Science and Technology, 80, 416–422.

    CAS  Article  Google Scholar 

  27. Pérez Pulido, R., Grande Burgos, M. J., Gálvez, A., & Lucas, R. (2017). Changes in bacterial diversity of refrigerated mango pulp before and after treatment by high hydrostatic pressure. LWT – Food Science and Technology, 78, 289–295.

    Article  Google Scholar 

  28. Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110, 48–68.

    CAS  Article  Google Scholar 

  29. Reps, A., Jankowska, & Wiśniewska, K. (2008). The effect of high pressures on the yoghurt from milk with the stabilizer. Journal of Physics: Conference Series, 121(14), 142007.

    Google Scholar 

  30. Reps, A., Warminska-Radyko, I., & Dajnowiec, F. (1999). Effect of high pressure on yoghurt. In H. Ludwig (Ed.), Advances in high pressure bioscience and biotechnology (pp. 453–456). Heidelberg: Springer.

    Google Scholar 

  31. Ruggirello, M., Cocolin, L., & Dolci, P. (2016). Fate of Lactococcus lactis starter cultures during late ripening in cheese models. Food Microbiology, 59, 112–118.

    CAS  Article  Google Scholar 

  32. Samaranayake, C. P., & Sastry, S. K. (2013). In-situ pH measurement of selected liquid foods under high pressure. Innovative Food Science and Emerging Technologies, 17, 22–26.

    CAS  Article  Google Scholar 

  33. Shah, N. P., Tsangalis, D., Donkor, O. N., & Versteeg, C. (2008). Effect of high pressure treatment on viability of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, and L. acidophilus and the pH of fermented milk. Milk Science International, 63(1), 11–14.

    CAS  Google Scholar 

  34. Sohier, D., Pavan, S., Riou, A., Combrisson, J., & Postollec, F. (2014). Evolution of microbial analytical methods for dairy industry needs. Frontiers in Microbiology, 5, 16.

    Article  Google Scholar 

  35. Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., & Guamis, B. (2002). Applications of high-hydrostatic pressure on milk and dairy products: a review. Innovative Food Science and Emerging Technologies, 3(4), 295–307.

    Article  Google Scholar 

  36. Ulmer, H. M., Gänzle, M. G., & Vogel, R. F. (2000). Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1. 460. Applied and Environmental Microbiology, 66(9), 3966–3973.

    CAS  Article  Google Scholar 

  37. Vargas, M., Cháfer, M., Albors, A., Chiralt, A., & González-Martínez, C. (2008). Physicochemical and sensory characteristics of yoghurt produced from mixtures of cows’ and goats’ milk. International Dairy Journal, 18(12), 1146–1152.

    CAS  Article  Google Scholar 

  38. Vogel, R., & Ehrmann, M. (2008). In C. Michiels, D. Bartlett, & A. Aersten (Eds.), Chapter 7: effects of pressure on lactic acid bacteria. Washington DC: ASM Press. https://doi.org/10.1128/9781555815646.ch7.

    Google Scholar 

  39. Walker, M. K., Farkas, D. F., Loveridge, V., & Meunier-Goddik, L. (2006). Fruit yogurt processed with high pressure. International Journal of Food Science & Technology, 41(4), 464–467.

    CAS  Article  Google Scholar 

  40. Wang, C. Y., Huang, H. W., Hsu, C. P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540.

    Article  Google Scholar 

  41. Zhao, F., Wang, Y., An, H., Hao, Y., Hu, X., & Liao, X. (2016). New insights into the formation of viable but nonculturable Escherichia coli O157: H7 induced by high-pressure CO2. MBio, 7(4), e00961–e00916.

    CAS  Article  Google Scholar 

Download references


This work was funded by the INTA-PNAIyAV-1130043 project “Strategies for the food differentiation and for the development of novel food products” and by the INTA-PNAIyAV-1130033 project “Preservation technologies of food and utilization of food by-products.”

Author information



Corresponding author

Correspondence to Juan Pega.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pega, J., Denoya, G.I., Castells, M.L. et al. Effect of High-Pressure Processing on Quality and Microbiological Properties of a Fermented Beverage Manufactured from Sweet Whey Throughout Refrigerated Storage. Food Bioprocess Technol 11, 1101–1110 (2018). https://doi.org/10.1007/s11947-018-2078-5

Download citation


  • High-pressure processing
  • Sweet whey
  • Shelf-life extension
  • Sensory analysis
  • Starter lactic acid bacteria
  • Culture-independent methods