Fundamental Understanding of Fouling Mechanisms During Microfiltration of Bitter Gourd (Momordica charantia) Extract and Their Dependence on Operating Conditions

Abstract

Microfiltration of bitter gourd (Momordica charantia) extract using hollow fiber membrane module was carried out in the present study. To identify the dominant fouling mechanism, flux decline behavior was examined using Field model. At lower transmembrane pressure, pore blocking mechanism was found to be more important, while cake filtration was dominant at higher pressure. Higher cross flow rate reduced filtration constant indicating slower rate of membrane fouling. Additionally, surface and particle size analyses were undertaken to validate the findings of modeling. Scanning electron microscope analysis clearly showed prevalence of pore blocking mechanism at lower transmembrane pressure drop, whereas cake filtration was dominant fouling mechanism at higher pressure. Fourier transform infrared spectroscopy analysis supported the role of cake layer as a secondary membrane retaining some amount of polyphenols. Analysis of flux decline ratio also confirmed that for transmembrane pressure of 104 kPa and beyond, cake layer became compact, and hence, increase in cross flow rate was unable to influence the improvement of permeate flux. The current study provides an insight into the fouling mechanism involved in scaling up of clarification of bitter gourd extract for successful processing of this medicinal herb.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bazzano, L. A., Li, T. Y., Joshipura, K. J., & Hu, F. B. (2008). Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care, 31(7), 1311–1317. https://doi.org/10.2337/dc08-0080.

    CAS  Article  Google Scholar 

  2. Biswas, P. P., Mondal, M., & De, S. (2016). Comparison between centrifugation and microfiltration as primary clarification of bottle gourd (Lagenaria siceraria) juice. Journal of Food Processing and Preservation, 40(2), 226–238. https://doi.org/10.1111/jfpp.12599.

    CAS  Article  Google Scholar 

  3. Bowen, W. R., Calvo, J. I., & Hernandez, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153–165. https://doi.org/10.1016/0376-7388(94)00295-A.

    CAS  Article  Google Scholar 

  4. Cassano, A., Conidi, C., & Drioli, E. (2010). Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination, 250(3), 1101–1104. https://doi.org/10.1016/j.desal.2009.09.117.

    CAS  Article  Google Scholar 

  5. Cassano, A., Luca, G. D., Conidi, C., & Drioli, E. (2017). Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review. Coordination Chemistry Reviews, 351, 45–75. https://doi.org/10.1016/j.ccr.2017.06.013.

    CAS  Article  Google Scholar 

  6. Chhaya, C., Rai, P., Majumdar, G. C., Dasgupta, S., & De, S. (2008). Clarification of watermelon (Citrullus lanatus) juice by microfiltration. Journal of Food Process Engineering, 31(6), 768–782. https://doi.org/10.1111/j.1745-4530.2007.00188.x.

    Article  Google Scholar 

  7. Chhaya, Majumdar, G. C., & De, S. (2013). Primary clarification of stevia extract: A comparison between centrifugation and microfiltration. Separation Science and Technology, 48(1):113–121.

    CAS  Article  Google Scholar 

  8. Coates, J. (2006). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester: John Wiley & Sons. https://doi.org/10.1002/9780470027318.a5606.

    Google Scholar 

  9. De Oliveira, R. C., Doce, R. C., & De Barros, S. T. D. (2012). Clarification of passion fruit juice by microfiltration: Analyses of operating parameters, study of membrane fouling and juice quality. Journal of Food Engineering, 111(2), 432–439. https://doi.org/10.1016/j.jfoodeng.2012.01.021.

    Article  Google Scholar 

  10. Domingues, R. C. C., Ramos, A. A., Cardoso, V. L., & Reis, M. H. M. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering, 121, 73–79. https://doi.org/10.1016/j.jfoodeng.2013.07.037.

    CAS  Article  Google Scholar 

  11. Duclos-Orsello, C., Li, W., & Chi Ho, C. (2006). A three mechanism model to describe fouling of microfiltration membranes. Journal of Membrane Science, 280(1-2), 856–866. https://doi.org/10.1016/j.memsci.2006.03.005.

    CAS  Article  Google Scholar 

  12. Duyn, M. A. S. V., & Pivonka, E. (2000). Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: Selected literature. Journal of the American Dietetic Association, 100(12), 1511–1521. https://doi.org/10.1016/S0002-8223(00)00420-X.

    Article  Google Scholar 

  13. Emani, S., Uppaluri, R., & Purkait, M. K. (2013). Preparation and characterization of low cost ceramic membranes for mosambi juice clarification. Desalination, 317, 32–40. https://doi.org/10.1016/j.desal.2013.02.024.

    CAS  Article  Google Scholar 

  14. Espamer, L., Pagliero, C., Ochoa, A., & Marchese, J. (2006). Clarification of lemon juice using membrane process. Desalination, 200(1–3), 565–567. https://doi.org/10.1016/j.desal.2006.03.458.

    CAS  Article  Google Scholar 

  15. Fang, E. F., & Ng, T. B. (2011). Bitter gourd (Momordica charantia) is a cornucopia of health: A review of its credited antidiabetic, anti-HIV, and antitumor properties. Current Molecular Medicine, 11(5), 417–436. https://doi.org/10.2174/156652411795976583.

    CAS  Article  Google Scholar 

  16. Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for microfiltration fouling. Journal of Membrane Science, 100(3), 259–272. https://doi.org/10.1016/0376-7388(94)00265-Z.

    CAS  Article  Google Scholar 

  17. Hermia, J. (1982). Constant pressure blocking filtration law: Application to power law non-Newtonian fluid. Trans IChemE, 60, 183–187.

    CAS  Google Scholar 

  18. Jain, A., & De, S. (2016). Aqueous extraction of bitter gourd (Momordica charantia L.) juice and optimization of operating conditions. Fruits, 71(6), 379–387. https://doi.org/10.1051/fruits/2016033.

    Article  Google Scholar 

  19. Jonsson, G., Pradanos, P., & Hernandez, A. (1996). Fouling phenomena in microporous membranes. Flux decline kinetics and structural modifications. Journal of Membrane Science, 112(2), 171–183. https://doi.org/10.1016/0376-7388(95)00286-3.

    CAS  Article  Google Scholar 

  20. Krop, J. J. P., & Pilnik, W. (1974). Effect of pectic acid and bivalent cations on cloud loss of citrus juice. Lebensmittel Wissenschaft und Technologie, 7, 62–63.

    CAS  Google Scholar 

  21. Layal, D., Christelle, W., Julien, R., Andre, K. G., Manuel, D., & Michele, D. (2015). Development of an original lab-scale filtration strategy for the prediction of microfiltration performance: Application to orange juice clarification. Separation and Purification Technology, 156, 42–50. https://doi.org/10.1016/j.seppur.2015.10.010.

    CAS  Article  Google Scholar 

  22. Leung, L., Birtwhistle, R., Kotecha, J., Hannah, S., & Cuthbertson, S. (2009). Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): A mini review. British Journal of Nutrition, 102(12), 1703–1708. https://doi.org/10.1017/S0007114509992054.

    CAS  Article  Google Scholar 

  23. Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 2, pp. 331–368). Netherlands: Springer Science+ Business Media B.V.

    Google Scholar 

  24. Liu, K., Xing, A., Chen, K., Wang, B., Zhou, R., Chen, S., Xu, X., & Mi, M. (2013). Effect of fruit juice on cholesterol and blood pressure in adults: A meta-analysis of 19 randomized controlled trials. PLoS One, 8(4), e61420. https://doi.org/10.1371/journal.pone.0061420.

    CAS  Article  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  26. Malik, V. S., Popkin, B. M., Bray, G. A., Despres, J. P., & Hu, F. B. (2010). Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation, 121(11), 1356–1364. https://doi.org/10.1161/CIRCULATIONAHA.109.876185.

    Article  Google Scholar 

  27. Mirsaeedghazi, H., Emam-Djomeh, Z., Mousavi, S. M., Aroujalian, A., & Navidbakhsh, M. (2010). Clarification of pomegranate juice by microfiltration with PVDF membranes. Desalination, 264(3), 243–248. https://doi.org/10.1016/j.desal.2010.03.031.

    CAS  Article  Google Scholar 

  28. Mondal, S., & De, S. (2010). A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation. Separation and Purification Technology, 75(2), 222–228. https://doi.org/10.1016/j.seppur.2010.07.016.

    CAS  Article  Google Scholar 

  29. Mondal, S., Cassano, A., & De, S. (2014). Modeling of gel layer-controlled fruit juice microfiltration in a radial cross flow cell. Food and Bioprocess Technology, 7(2):355–370.

    Article  Google Scholar 

  30. Mulder, M. (1991). Basic principles of membrane technology (1st ed.). London: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-017-0835-7.

    Google Scholar 

  31. Nandi, B. K., Das, B., Uppaluri, R., & Purkait, M. K. (2009). Microfiltration of mosambi juice using low cost ceramic membrane. Journal of Food Engineering, 95(4), 597–605. https://doi.org/10.1016/j.jfoodeng.2009.06.024.

    CAS  Article  Google Scholar 

  32. Nandi, B. K., Uppaluri, R., & Purkait, M. K. (2011). Identification of optimal membrane morphological parameters during microfiltration of mosambi juice using low cost ceramic membranes. LWT-Food Science and Technology, 44(1), 214–223. https://doi.org/10.1016/j.lwt.2010.06.026.

    CAS  Article  Google Scholar 

  33. Ough, C. S., & Crowell, E. A. (1979). Pectic-enzyme treatment of white grapes: Temperature, variety and skin-contact time factors. American Journal of Enology and Viticulture, 30, 22–27.

    CAS  Google Scholar 

  34. Qin, G., Lu, X., Wei, W., Li, J., Cui, R., & Hu, S. (2015). Microfiltration of kiwifruit juice and fouling mechanism using fly-ash-based ceramic membranes. Food and Bioproducts Processing, 96, 278–284. https://doi.org/10.1016/j.fbp.2015.09.006.

    CAS  Article  Google Scholar 

  35. Rai, C., Rai, P., Majumdar, G. C., De, S., & DasGupta, S. (2010). Mechanism of permeate flux decline during microfiltration of watermelon (Citrullus lanatus) juice. Food and Bioprocess Technology, 3(4), 545–553. https://doi.org/10.1007/s11947-008-0118-2.

    Article  Google Scholar 

  36. Rai, P., Majumdar, G. C., Jayanti, V. K., DasGupta, S., & De, S. (2006). Alternative pretreatment methods to enzymatic treatment for clarification of mosambi juice using ultrafiltration. Journal of Food Process Engineering, 29(2), 202–218. https://doi.org/10.1111/j.1745-4530.2006.00058.x.

    Article  Google Scholar 

  37. Rai, P., Rai, C., Majumdar, G. C., Dasgupta, S., & De, S. (2008). Storage study of ultrafiltered mosambi ((L.) Osbeck) juice. Journal of Food Processing and Preservation, 32(6):923–934.

    CAS  Article  Google Scholar 

  38. Razi, B., Aroujalian, A., & Fathizadeh, M. (2012). Modeling of fouling layer deposition in cross-flow microfiltration during tomato juice clarification. Food and Bioproducts Processing, 90(4), 841–848. https://doi.org/10.1016/j.fbp.2012.05.004.

    CAS  Article  Google Scholar 

  39. Ribeiro, R. F., Pardini, L. C., Alves, N. P., & Junior, C. A. R. B. (2015). Thermal stabilization study of polyacrylonitrile fiber obtained by extrusion. Polimeros, 25(6), 523–530.

    Google Scholar 

  40. Ru, P., Steele, R., Nerurkar, P. V., Phillips, N., & Ray, R. B. (2011). Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Cancer Prevention Research, 4(12), 2122–2130. https://doi.org/10.1158/1940-6207.CAPR-11-0376.

    Article  Google Scholar 

  41. Sagu, S. T., Karmakar, S., Nso, E. J., & De, S. (2014). Primary clarification of banana juice extract by centrifugation and microfiltration. Separation Science and Technology, 49(8), 1156–1169. https://doi.org/10.1080/01496395.2013.877932.

    CAS  Article  Google Scholar 

  42. Thakur, B. K., & De, S. (2012). A novel method for spinning hollow fiber membrane and its application for treatment of turbid water. Separation and Purification Technology, 93(1), 67–74. https://doi.org/10.1016/j.seppur.2012.03.032.

    CAS  Article  Google Scholar 

  43. Todisco, S., Pena, L., Drioli, E., & Tallarico, P. (1996). Analysis of the fouling mechanism in microfiltration of orange juice. Journal of Food Processing and Preservation, 20(6), 453–466. https://doi.org/10.1111/j.1745-4549.1996.tb00759.x.

    Article  Google Scholar 

  44. Ushikubo, F. Y., Watanabe, A. P., & Viotto, L. A. (2007). Microfiltration of umbu (Spondias tuberosa Arr. Cam.) juice. Journal of Membrane Science, 288(1–2), 61–66. https://doi.org/10.1016/j.memsci.2006.11.003.

    CAS  Article  Google Scholar 

  45. Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., & Dhuique-Mayer, C. (2005). Clarification and concentration of melon juice using membrane processes. Innovative Food Science & Emerging Technologies, 6(2), 213–220. https://doi.org/10.1016/j.ifset.2004.11.004.

    CAS  Article  Google Scholar 

  46. Vartanian, L. R., Schwartz, M. B., & Brownell, K. D. (2007). Effects of soft drink consumption on nutrition and health: A systematic review and meta-analysis. American Journal of Public Health, 97(4), 667–675. https://doi.org/10.2105/AJPH.2005.083782.

    Article  Google Scholar 

  47. Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111(4), 816–823. https://doi.org/10.1016/j.foodchem.2008.04.054.

    CAS  Article  Google Scholar 

  48. Zhu, Z., Liu, Y., Guan, Q., He, J., Liu, G., Li, S., Ding, L., & Jaffrin, M. Y. (2015). Purification of purple sweet potato extract by dead-end filtration and investigation of membrane fouling mechanism. Food and Bioprocess Technology, 8(8), 1680–1689. https://doi.org/10.1007/s11947-015-1532-x.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by a grant from Sponsored Research and Industrial Consultancy (SRIC), Indian Institute of Technology Kharagpur under the scheme no. IIT/SRIC/CHE/SMU/2014-15/40, dated 17-04-2014.

Nomenclature

A surface area of membrane module (m2)

CFR cross flow rate (L/h)

GAE gallic acid equivalent

J permeate flux at time t (L/m2 h)

J cal,i simulated value of flux at time t (L/m2 h)

J exp,i experimental value of flux at time t (L/m2 h)

J* steady-state permeate flux (L/m2 h)

J w pure water flux (L/m2 h)

J0 initial permeate flux (L/m2 h)

k filtration constant

L p permeability of the membrane (m/Pa s)

PAN polyacrylonitrile

ΔP transmembrane pressure (Pa)

R2 coefficient of determination

s sum of square of relative error

t time (h)

Δt sampling time (h)

TMP transmembrane pressure (Pa)

TS total solids (g/100 mL)

TSS total soluble sugar (0Brix)

V volume of permeate collected (L)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sirshendu De.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Sengupta, S. & De, S. Fundamental Understanding of Fouling Mechanisms During Microfiltration of Bitter Gourd (Momordica charantia) Extract and Their Dependence on Operating Conditions. Food Bioprocess Technol 11, 1012–1026 (2018). https://doi.org/10.1007/s11947-018-2074-9

Download citation

Keywords

  • Microfiltration
  • Bitter gourd
  • Field model
  • Fouling mechanism
  • Surface morphology
  • Cake filtration