Food and Bioprocess Technology

, Volume 11, Issue 5, pp 953–965 | Cite as

Effects of Fat and Sugar on Dough and Biscuit Behaviours and their Relationship to Proton Mobility Characterized by TD-NMR

  • M. S. Blanco Canalis
  • M. C. Valentinuzzi
  • R. H. Acosta
  • A. E. León
  • P. D. Ribotta
Original Paper


This study aimed to analyse the effect of large variations in fat and sucrose contents of biscuit formulation on dough rheology, biscuit quality and proton mobility. Control dough (full fat and sucrose) and 25 and 50% fat and sucrose-reduced doughs were elaborated. Rheological properties of dough were determined. Dough cooking behaviour and biscuit quality were evaluated. Fat reduction produced an increase in the consistency and elastic properties of the dough. The decrease in sucrose content affected to a lesser extent the rheological properties at room temperature, although it produced significant changes during dough baking. The biscuit quality decreased with fat and sucrose reductions. The reduction of fat or sucrose produced gluten hydration and extra interactions and subsequent cross-linking during baking, and a reduction of sucrose led to the swelling and partial gelatinization of starch during baking. A dipolar reversed eco NMR sequence was applied to determine changes in the amount and mobility of solid and mobile components both in dough and biscuits. TD-NMR results allowed corroborating the proposed hypotheses about the effects on dough and biscuit characteristics as a consequence of reduction of main ingredients, as fat and sucrose. The redistribution of water after baking can be correlated with biscuit factor and breaking force.


Biscuits Quality Rheology Fat Sucrose NMR 



The authors would like to acknowledge Consejo Nacional de Ciencia y Técnica (CONICET), Secretaría de Ciencia y Tecnología (SECYT) of the Universidad Nacional de Córdoba (UNC) and the Fondo para la Investigación, Ciencia y Tecnología and Ministerio de Ciencia y Tecnología (FONCyT) for financial support.

Supplementary material

11947_2018_2063_MOESM1_ESM.docx (431 kb)
ESM 1 (DOCX 430 kb)


  1. Assifaoui, A., Champion, D., Chiotelli, E., & Verel, A. (2006a). Characterization of water mobility in biscuit dough using a low-field 1H NMR technique. Carbohydrate Polymers, 64(2), 197–204. CrossRefGoogle Scholar
  2. Assifaoui, A., Champion, D., Chiotelli, E., & Verel, A. (2006b). Rheological behaviour of biscuit dough in relation to water mobility. International Journal of Food Science and Technology, 41(2), 124–128. CrossRefGoogle Scholar
  3. Baltsavias, A., Jurgens, A., & van Vliet, T. (1999). Properties of short-dough biscuits in relation to structure. Journal of Cereal Science, 29(3), 245–255. CrossRefGoogle Scholar
  4. Blanco Canalis, M.S., Steffolani, M.E., León, A.E., Ribotta, P.D. (2017) Effect of different fibers on dough properties and biscuit quality. Journal of the Science of Food and Agriculture, 97(5), 1607–1615.CrossRefGoogle Scholar
  5. Carr, H. Y., & Purcell, E. M. (1954). Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review Letters, 94(3), 630–638.Google Scholar
  6. Chevallier, S., Colonna, P., Buléon, A., Della Valle, G. (2000) Physicochemical Behaviors of Sugars, Lipids, and Gluten in Short Dough and Biscuit. Journal of Agricultural and Food Chemistry, 48(4), 1322–1326.CrossRefGoogle Scholar
  7. Coultate, T. P. (1989). FOOD: The chemistry of its components (3rd ed.). Cambridge: Royal Society of Chemistry.Google Scholar
  8. Curti, E., Bubici, S., Carinia, E., Baroni, S., & Vittadini, E. (2011). Water molecular dynamics during bread staling by nuclear magnetic resonance. Food Science and Technology, 44, 854–859.Google Scholar
  9. Delcour, J.A., Hoseney, R.C. (2010). Principles of Cereal Science and Technology. St. Paul, USA: AACC Int., Inc.CrossRefGoogle Scholar
  10. Gaines, C. S. (1994). Objective assessment of cookie and cracker texture. In H. Faried (Ed.), The science of biscuit and cracker production (pp. 455–495). New York: Van Nostrand Reinhold.Google Scholar
  11. Gallagher, E., O’Brien, C. M., Scannell, A. G. M., & Arendt, E. K. (2003). Evaluation of sugar replacers in short dough biscuit production. Journal of Food Engineering, 56(2–3), 261–263. CrossRefGoogle Scholar
  12. Ghiasi, K., Hoseney, R. C., & Varriano-Marston, E. (1983). Effects of flour components and dough ingredients on starch gelatinization. Cereal Chemistry Journal, 60, 58–61.Google Scholar
  13. Hoseney, R.C. (1994). Principles of Cereal Science and Technology. St. Paul, USA: AACC International.Google Scholar
  14. Hsu, C. L., Chen, W., Weng, Y. M., & Tseng, C. Y. (2003). Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry, 83(1), 85–92. CrossRefGoogle Scholar
  15. Jacob, J., & Leelavathi, K. (2007). Effect of fat-type on cookie dough and cookie quality. Journal of Food Engineering, 79(1), 299–305. CrossRefGoogle Scholar
  16. Kovrlija, R., & Rondeau-Mouro, C. (2017). Hydrothermal changes in wheat starch monitored by two-dimensional NMR. Food Chemistry, 214, 412–422. CrossRefGoogle Scholar
  17. Kweon, M., Slade, L., Levine, H., & Gannon, D. (2014). Biscuit-versus cracker-baking—What's the difference? Flour functionality requirements explored by SRC and Alveography. Critical Reviews in Food Science and Nutrition, 54(1), 115–138. CrossRefGoogle Scholar
  18. Le Grand, F., Cambert, M., & Mariette, F. (2007). NMR signal analysis to characterize solid, aqueous and lipid phases in baked cakes. Journal of Agricultural and Food Chemistry, 55(26), 10947–10952. CrossRefGoogle Scholar
  19. Leung, H. K., Barron, F. H., & Davis, D. (1983). Textural and rheological properties of cooked potatoes. Journal of Food Science, 48(5), 1470–1474. CrossRefGoogle Scholar
  20. Luyts, A., Wilderjans, E., Waterschoot, J., Van Haesendonck, I., Brijs, K., Courtin, C. M., Hills, B., & Delcour, J. A. (2013). Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chemistry, 139(1–4), 120–128. CrossRefGoogle Scholar
  21. Maache-Rezzoug, Z., Bouvier, J. M., Allaf, K., & Patras, C. (1998). Effect of principal ingredients on rheological behaviour of biscuit dough and on quality of biscuits. Journal of Food Engineering, 35(1), 23–42. CrossRefGoogle Scholar
  22. Manley, D. (2000). Technology of biscuits, crackers and biscuits (3erd ed.). Cambridge: Woodhead Publishing Limited.CrossRefGoogle Scholar
  23. Maus, A., Hertlein, C., & Saalwächter, K. (2006). A robust proton NMR method to investigate hard/soft ratios, crystallinity and component mobility in polymers. Macromolecular Chemistry and Physics, 207(13), 1150–1158. CrossRefGoogle Scholar
  24. Meiboom, S., & Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Review of Scientific Instruments, 29(8), 688–691. CrossRefGoogle Scholar
  25. Miller, R. A., & Hoseney, R. C. (1997). Factors in hard wheat flour responsible for reduced biscuit spread. Cereal Chemistry Journal, 74(3), 330–336. CrossRefGoogle Scholar
  26. Pareyt, B., & Delcour, J. A. (2008). The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: a review on sugar-snap biscuits. Critical Reviews in Food Science and Nutrition, 48(9), 824–839. CrossRefGoogle Scholar
  27. Pareyt, B., Talhaoui, F., Kerckhofs, G., Brijs, K., Goesaert, H., Wevers, M., & Delcour, J. A. (2009). The role of sugar and fat in sugar-snap biscuits: structural and textural properties. Journal of Food Engineering, 90(3), 400–408. CrossRefGoogle Scholar
  28. Pareyt, B., Brijs, K., & Delcour, J. A. (2010). Impact of fat on dough and biscuit properties of sugar-snap biscuits. Cereal Chemistry Journal, 87(3), 226–230. CrossRefGoogle Scholar
  29. Peleg, M. (1987). The basics os solid food rheology. In H. R. Moskowitz (Ed.), Food texture instrumental and sensory measurent (pp. 3–33). New York: Marcell Dekker Press.Google Scholar
  30. Rondeau-Mouro, C., Cambert, M., Kovrlija, R., Musse, M., Lucas, T., Mariette, F. (2015) Temperature-Associated Proton Dynamics in Wheat Starch-Based Model Systems and Wheat Flour Dough Evaluated by NMR. Food and Bioprocess Technology, 8(4), 777–790.CrossRefGoogle Scholar
  31. Rondeau-Mouro, C., Kovrlija, R., Van Steenberge, E., Moussaoui, S. (2016) Two dimensional IR-FID-CPMG acquisition and adaptation of a maximum entropy reconstruction. Journal of Magnetic Resonance, 265, 16–24.CrossRefGoogle Scholar
  32. Serial, M. R., Blanco Canalis, M. S., Carpinella, M., Valentinuzzi, M., León, A. E., Ribotta, P. D., & Acosta, R. H. (2016). Influence of the incorporation of fibers in biscuit dough on proton mobility characterized by time domain NMR. Food Chemistry, 192, 950–957.CrossRefGoogle Scholar
  33. Slade, L., & Levine, H. (1994). Structure and function relationships of cookie and cracker ingredients. In H. Faridi (Ed.), The science of biscuit and cracker production (pp. 23–141). New York: Chapman & Hall/AVI.Google Scholar
  34. Slade, L., Levine, H., Wang, M., & Ievolella, J. (1996). DSC analysis of starch thermal properties related to functionality in low moisture baked goods. Journal of Thermal Analysis, 47(5), 1299–1314. CrossRefGoogle Scholar
  35. Song, Y. Q., Venkataramanan, L., Hurlimann, M. D., Flaum, M., Frulla, P., & Straley, C. (2002). T1-T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. Journal of Magnetic Resonance, 154(2), 261–268. CrossRefGoogle Scholar
  36. Sudha, M. L., Srivastava, A. K., Vetrimani, R., & Leelavathi, K. (2007). Fat replacement in soft dough biscuits: its implications on dough rheology and biscuit quality. Journal of Food Engineering, 80(3), 922–930. CrossRefGoogle Scholar
  37. Van Duynhoven, J., Voda, A., Witek, M., & Van As, H. (2010). Time-domain applied to food products NMR. Annual Reports on NMR Spectroscopy, 69, 145–197. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CONICET-UNCInstituto de Ciencia y Tecnología de AlimentosCórdobaArgentina
  2. 2.Universidad Nacional de Córdoba FaMAFCórdobaArgentina
  3. 3.CONICETInstituto de Física Enrique GaviolaCórdobaArgentina
  4. 4.Universidad Nacional de Córdoba, Facultad de Ciencias AgropecuariasCórdobaArgentina
  5. 5.Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y NaturalesCórdobaArgentina
  6. 6.Universidad Nacional de CórdobaInstituto Superior de Investigación, Desarrollo y Servicios en Alimentos, SECYTCórdobaArgentina

Personalised recommendations