Skip to main content
Log in

Separation of Sucrose and Reducing Sugar in Cane Molasses by Nanofiltration

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Recovery of sugars from cane molasses is a promising approach to increase the added value of molasses and reduce its environmental pollution. In this work, for the first time, nanofiltration (NF) was used for the separation of sucrose and reducing sugar in cane molasses by a cascade diafiltration-concentration process. The retention difference between sucrose and reducing sugar by all the tested NF membranes was not distinct at 25 °C, while due to the thermal-induced pore size change and enhanced solute diffusivity, the NF retention behavior changed significantly at 60 °C, and the DL membrane with a sucrose retention of 96% and a reducing sugar retention 5% was selected for the process optimization and modeling. High temperature (55–60 °C), low permeate flux (below 15 Lm−2 h−1), and high sugar concentration resulted in a low retention of reducing sugar due to the dominant diffusive mass transfer, which was desirable for the molasses separation by NF. Mathematical modeling could well predict the diafiltration and concentration processes if using right sugar retention data. The deviations between prediction lines and experimental data in the cross-flow filtration of real solution were mainly caused by the permeate flux variation rather than membrane fouling. After diafiltration, the ratio of sucrose in total molasses sugar increased from 76.1 to 87.9%, while in the permeate of the second concentration step, the ratio of sucrose was only 2.4%. Thus, the retentate of diafiltration could be directly used for sucrose crystallization to avoid the accumulation of reducing sugar and salts, and the permeate of the second concentration step could be concentrated by NF270 at room temperature to produce syrup drinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altmann, K., Clawin-Rädecker, I., Hoffmann, W., & Lorenzen, P. C. (2016). Nanofiltration enrichment of milk oligosaccharides (MOS) in relation to process parameters. Food and Bioprocess Technology, 9(11), 1924–1936.

    Article  CAS  Google Scholar 

  • Baikow, V. E. (2013). Final molasses. In Manufacture and refining of raw cane sugar (pp. 218–224): Elsevier.

  • Bandini, S., & Morelli, V. (2017). Effect of temperature, pH and composition on nanofiltration of mono/disaccharides: experiments and modeling assessment. Journal of Membrane Science, 533, 57–74.

    Article  CAS  Google Scholar 

  • Ben Amar, N., Saidani, H., Deratani, A., & Palmeri, J. (2007). Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes. Langmuir, 23(6), 2937–2952.

    Article  CAS  Google Scholar 

  • Bernal, M., Ruiz, M. O., Geanta, R. M., Benito, J. M., & Escudero, I. (2016). Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal, 283, 313–322.

    Article  CAS  Google Scholar 

  • Córdova, A., Astudillo, C., Giorno, L., Guerrero, C., Conidi, C., Illanes, A., et al. (2016). Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food and Bioproducts Processing, 98, 50–61.

    Article  Google Scholar 

  • Clarke, S. J. (1995), Softening and purification of molasses or syrup, US5454875 A

  • Dang, H. Q., Price, W. E., & Nghiem, L. D. (2014). The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270. Separation and Purification Technology, 125, 43–51.

    Article  CAS  Google Scholar 

  • Donovan, M., & Hlavacek, M. (2002), Process for purification of low grade sugar syrups using nanofiltration, US6406546 B1.

  • Goulas, A. K., Kapasakalidis, P. G., Sinclair, H. R., Rastall, R. A., & Grandison, A. S. (2002). Purification of oligosaccharides by nanofiltration. Journal of Membrane Science, 209(1), 321–335.

    Article  CAS  Google Scholar 

  • Kearney, M., & Kochergin, V. (2002). Chromatographic applications in the cane sugar industry. International Sugar Journal, 104, 194–203.

    CAS  Google Scholar 

  • Koschuh, W., Thang, V. H., Krasteva, S., Novalin, S., & Kulbe, K. D. (2005). Flux and retention behaviour of nanofiltration and fine ultrafiltration membranes in filtrating juice from a green biorefinery: a membrane screening. Journal of Membrane Science, 261, 121–128.

    Article  CAS  Google Scholar 

  • Kuhn, R. C., Maugeri Filho, F., Silva, V., Palacio, L., Hernández, A., & Prádanos, P. (2010). Mass transfer and transport during purification of fructooligosaccharides by nanofiltration. Journal of Membrane Science, 365(1–2), 356–365.

    Article  CAS  Google Scholar 

  • Lameloise, M.-L., & Lewandowski, R. (1994). Purification of beet molasses by ion-exclusion chromatography: fixed-bed modelling. Journal of Chromatography A, 685(1), 45–52.

    Article  CAS  Google Scholar 

  • Li, J. (2008). Study on sucrose separation from molasses by membrane filtration. Master thesis: Guangxi University.

    Google Scholar 

  • Li, W., Ling, G.-Q., Huang, P., Li, K., Lu, H.-Q., Hang, F.-X., et al. (2016). Performance of ceramic microfiltration membranes for treating carbonated and filtered remelt syrup in sugar refinery. Journal of Food Engineering, 170, 41–49.

    Article  CAS  Google Scholar 

  • Luo, J., Ding, L., Chen, X., & Wan, Y. (2009). Desalination of soy sauce by nanofiltration. Separation and Purification Technology, 66(3), 429–437.

    Article  CAS  Google Scholar 

  • Luo, J., Hang, X., Zhai, W., Qi, B., Song, W., Chen, X., et al. (2016). Refining sugarcane juice by an integrated membrane process: filtration behavior of polymeric membrane at high temperature. Journal of Membrane Science, 509, 105–115.

    Article  CAS  Google Scholar 

  • Luo, J., & Wan, Y. (2013). Effects of pH and salt on nanofiltration—a critical review. Journal of Membrane Science, 438, 18–28.

    Article  CAS  Google Scholar 

  • Luo, J., Zhu, Z., Ding, L., Bals, O., Wan, Y., Jaffrin, M. Y., et al. (2013). Flux behavior in clarification of chicory juice by high-shear membrane filtration: evidence for threshold flux. Journal of Membrane Science, 435, 120–129.

    Article  CAS  Google Scholar 

  • Mänttäri, M., Pihlajamäki, A., Kaipainen, E., & Nyström, M. (2002). Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes. Desalination, 145(1), 81–86.

    Article  Google Scholar 

  • Meyer, P., Hartinger, M., Sigler, S., & Kulozik, U. (2017). Concentration of milk and whey by membrane technologies in alternative cascade modes. Food and Bioprocess Technology, 10(4), 674–686.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Nakasone, S., Miyagi, S., Aragaki, T., & Higa, Y. (1985). Process for clarifying and desalinating sugar cane syrup or molasses. US, 4492601.

  • Nandy, T., Shastry, S., & Kaul, S. N. (2002). Wastewater management in a cane molasses distillery involving bioresource recovery. Journal of Environmental Management, 65(1), 25–38.

    Article  Google Scholar 

  • Ou, D.-Y. (1985), Separation of sucrose from molasses, US4519845 A.

  • Pruksasri, S., Nguyen, T.-H., Haltrich, D., & Novalin, S. (2015). Fractionation of a galacto-oligosaccharides solution at low and high temperature using nanofiltration. Separation and Purification Technology, 151, 124–130.

    Article  CAS  Google Scholar 

  • Ribeiro, A. C. F., Ortona, O., Simões, S. M. N., Santos, C. I. A. V., Prazeres, P. M. R. A., Valente, A. J. M., et al. (2006). Binary mutual diffusion coefficients of aqueous solutions of sucrose, lactose, glucose, and fructose in the temperature range from (298.15 to 328.15) K. Journal of Chemical & Engineering Data, 51(5), 1836–1840.

    Article  CAS  Google Scholar 

  • Riffer, R. (1977), Process for the production of a colorless sugar syrup from cane molasses, US4046590 A.

  • Saidani, H., Amar, N. B., Palmeri, J., & Deratani, A. (2010). Interplay between the transport of solutes across nanofiltration membranes and the thermal properties of the thin active layer. Langmuir, 26(4), 2574–2583.

    Article  CAS  Google Scholar 

  • Sharma, M., Patel, S. N., Lata, K., Singh, U., Krishania, M., Sangwan, R. S., et al. (2016). A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. Bioresource Technology, 219, 311–318.

    Article  CAS  Google Scholar 

  • Sharma, R. R., & Chellam, S. (2005). Temperature effects on the morphology of porous thin film composite nanofiltration membranes. Environmental Science & Technology, 39(13), 5022–5030.

    Article  CAS  Google Scholar 

  • Susanto, H., Roihatin, A., & Widiasa, I. N. (2016). Production of colorless liquid sugar by ultrafiltration coupled with ion exchange. Food and Bioproducts Processing, 98, 11–20.

    Article  CAS  Google Scholar 

  • Valli, V., Gómez-Caravaca, A. M., Di Nunzio, M., Danesi, F., Caboni, M. F., & Bordoni, A. (2012). Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry, 60(51), 12508–12515.

    Article  CAS  Google Scholar 

  • Wang, X.-L., Zhang, C., & Ouyang, P. (2002). The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode. Journal of Membrane Science, 204(1–2), 271–281.

    Article  CAS  Google Scholar 

  • Zhao, L., Zhao, H., Nguyen, P., Li, A., Jiang, L., Xia, Q., et al. (2013). Separation performance of multi-components solution by membrane technology in continual diafiltration mode. Desalination, 322, 113–120.

    Article  CAS  Google Scholar 

  • Zhu, Z., Mhemdi, H., Zhang, W., Ding, L., Bals, O., Jaffrin, M. Y., et al. (2016). Rotating disk-assisted cross-flow ultrafiltration of sugar beet juice. Food and Bioprocess Technology, 9(3), 493–500.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Development Center of Water Treatment Technology, Hangzhou, for kindly providing membrane samples used in this study.

Funding

The authors thank the Key Research Program of Chinese Academy of Sciences (No. KFZD-SW-211-3) for the financial supports and. This work was supported by the “100 Talents Program” and Youth Innovation Promotion Association (2017069) of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianquan Luo or Yinhua Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Guo, S., Wu, Y. et al. Separation of Sucrose and Reducing Sugar in Cane Molasses by Nanofiltration. Food Bioprocess Technol 11, 913–925 (2018). https://doi.org/10.1007/s11947-018-2062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2062-0

Keywords

Navigation