Advertisement

Food and Bioprocess Technology

, Volume 11, Issue 3, pp 551–560 | Cite as

Mastitis Detection and Prediction of Milk Composition Using Gas Sensor and Electrical Conductivity

  • Renan S. Lima
  • Guilherme C. Danielski
  • Ana Clarissa S. Pires
Original Paper
  • 171 Downloads

Abstract

Milk is a complex raw material, and it requires a strict quality control. The analyses that milk undergoes upon its arrival to the dairy industry are essential for its quality control. However, some of these analyses are complex; expensive; and in some cases, subjective, such as the detection of sub-clinical mastitis. With that in mind, a portable device was developed with the objective to create a fast, accurate, and easy-to-use tool for the detection of mastitis and for the evaluation of the overall quality of milk. Samples of bovine raw milk were evaluated for acidity, composition, somatic cell count (SCC), and electrical conductivity, coupled with gas sensor MQ-135, responsible for detecting carbon dioxide and ammonium, and gas sensor MQ-3, responsible for detecting ethanol, benzene, methane, hexane, and carbon monoxide. Through the MQ-135 measurement, it was possible to determine the occurrence of mastitis milk with a 77% accuracy, while MQ-3 did not show promising results. Besides, it was also possible to estimate acidity, lactose, protein, ashes, and casein content with the use of our portable device, with a satisfactory level of accuracy when milk components were found within their normal range of variation. The sensor device developed shows potential to provide a fast decision-making tool in the dairy industry.

Keywords

Milk quality Portable device Sensor MQ-135 Conductivity Estimation 

Notes

Funding Information

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the financial support.

References

  1. Association of Official Analytical Chemists - AOAC (1990). Official methods of analysis of international. 15 ed. Washington DC.Google Scholar
  2. Association of Official Analytical Chemists - AOAC (2000). Official methods of analysis of international. 17 ed. Washington DC.Google Scholar
  3. Bansal, B. K., Hamann, J., Grabowski, N. T., & Singh, K. B. (2005). Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. Journal of Dairy Research, 72(1), 144–152.  https://doi.org/10.1017/S0022029905000798.CrossRefGoogle Scholar
  4. Brouk, M. J., Cvetkovic, B., Rice, D. W., Smith, B. L., Hinds, M. A., & Owens, F. N. (2011). Performance of lactating dairy cows fed corn as whole plant silage and grain produced from genetically modified corn containing event DAS-59122-7 compared to a nontransgenic near-isogenic control. Journal of Dairy Science, 94(4), 1961–1966.  https://doi.org/10.3168/jds.2010-3477.CrossRefGoogle Scholar
  5. Chen, B., Lewis, M., & Grandison, A. (2014). Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chemistry, 158(1), 216–223.  https://doi.org/10.1016/j.foodchem.2014.02.118.CrossRefGoogle Scholar
  6. Eriksson, A., Waller, K. P., Svennersten-Sjaunja, K., Haugen, J.-E., Lundby, F., & Lind, O. (2005). Detection of mastitic milk using a gas-sensor array system (electronic nose). International Dairy Journal, 15(1), 1193–1201.  https://doi.org/10.1016/j.idairyj.2004.12.012.CrossRefGoogle Scholar
  7. Fourie, C.J., Van Der Westhuyzen P.J., & Van Niekerk P.C. (2007). An automated system for impedance measurements in milk. AFRICON 2007. IEEE.Google Scholar
  8. Fröhling, A., Wienke, M., Rose-Meirhofer, S., & Schluter, O. (2010). Improved method for mastitis detection and evaluation of disinfectant efficiency during milking process. Food and Bioprocess Technology, 3(1), 892–900.  https://doi.org/10.1007/s11947-010-0366-9.CrossRefGoogle Scholar
  9. Hauke, J., & Kossowski, T. (2011). Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae, 30(2), 87–93.CrossRefGoogle Scholar
  10. Hettinga, K. A. (2008). Quality control of raw cow's milk by headspace analysis. International Dairy Journal, 18(5), 506–513.  https://doi.org/10.1016/j.idairyj.2007.10.005.CrossRefGoogle Scholar
  11. Hettinga, K. A., van Valenberg, H. J. F., Lam, T. J. G. M., & van Hooijdonk, A. C. M. (2009). The origin of the volatile metabolites found in mastitis milk. Veterinary Microbiology, 137(3–4), 384–387.  https://doi.org/10.1016/j.vetmic.2009.01.016.CrossRefGoogle Scholar
  12. Inalpulat, M., Kizil, Ü., Bilgücü, E., & Genç, L. (2016). E-nose identification of milk somatic cell count. Journal of Graduate School of Natural and Applied Sciences, 2(1), 22–35.Google Scholar
  13. Kessels, J. A., Cha, E., Johnson, S. K., Welcome, F. L., Kristensen, A. R., & Gröhn, Y. T. (2016). Economic comparison of common treatment protocols and J5 vaccination for clinical mastitis in dairy herds using optimized culling decisions. Journal of Dairy Science, 99(5), 3838–3847.  https://doi.org/10.3168/jds.2015-10385.CrossRefGoogle Scholar
  14. Khatun, M., Clark, C. E. F., Lyons, N. A., Thomson, P. C., Kerrisk, K. L., & García, S. C. (2017). Early detection of clinical mastitis from electrical conductivity data in an automatic milking system. Animal Production Science, 57(7), 1226–1232.  https://doi.org/10.1071/AN16707.CrossRefGoogle Scholar
  15. Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical model. Chicago, IL: McGraw-Hill/Irwin.Google Scholar
  16. Le Maréchal, C., Hernandez, D., Schrenzel, J., Even, S., Berkova, N., Thiery, R., Vautor, E., Fitzgerald, J. R., Francois, P., Le Loir, Y. (2011). Genome sequences of two staphylococcus aureus ovine strains that induce severe (Strain O11) and mild (Strain O46) mastitis. Journal of Bacteriology, 193(9), 2353–2354.Google Scholar
  17. Lien, C.-C., Wan, Y.-N., & Ting, C.-H. (2016). Online detection of dairy cow subclinical mastitis using electrical conductivity indices of milk. Engineering in Agriculture, Environment and Food, 9(3), 201–207.  https://doi.org/10.1016/j.eaef.2015.12.002.CrossRefGoogle Scholar
  18. Longo, R. M., Ferreira, L. F., Feijo, F. D. A. C., Conrrado, R. S., Costa, M. E. R., & Cerqueira, M. M. O. P. (2016). Lipolysis effect on milk fat and protein analysis by infrared spectroscopy using filter and Fourier transform infrared (FTIR) methods. Journal of Animal Science, 94(1), 267–267.  https://doi.org/10.2527/jam2016-0561.CrossRefGoogle Scholar
  19. Machado, S. C., Fischer, V., Stumpf, M. T., & Stivanin, S. C. B. (2017). Seasonal variation, method of determination of bovine milk stability, and its relation with physical, chemical, and sanitary characteristics of raw milk. Revista Brasileira de Zootecnica, 46(4), 340–347.  https://doi.org/10.1590/s1806-92902017000400010.CrossRefGoogle Scholar
  20. Mekibib, B., Furgasa, M., Abunna, F., Megersa, B., & Regassa, A. (2010). Bovine mastitis: prevalence, risk factors and major pathogens in dairy farms of Holeta town, Central Ethiopia. Veterinary World, 3(9), 397–403.  https://doi.org/10.5455/vetworld.2010.397-403.CrossRefGoogle Scholar
  21. Press, W., Flannery, B., Teukolsky, S., Vetterling, W. (2007). Numerical recipes. In: Fortran numerical recipes: the art of scientific computing, vol. 1, Cambridge University press, 1992.Google Scholar
  22. Pyorala, S. (2003). Indicators of inflammation in the diagnosis of mastitis. Veterinary Research, 34(1), 565–578.  https://doi.org/10.1051/vetres:2003026.CrossRefGoogle Scholar
  23. Reinemann, D.J., & Helgren, J.M. (2004). Online milk sensing issues for automatic milking. 2004 ASAE/CSAE annual international meeting, Ottawa, Ontario, Canada, paper number 04-4191.Google Scholar
  24. Ribeiro, A. B. C., Santos, J. S., Zanol, D., Lombarde, L. N. L., Bruzaroski, S. R., Ludovico, A., & Santana, E. H. W. (2016). Evaluation of an electrical conductivity portable device as an alternative for subclinical mastitis detection. Revista de Salud Animal, 38(2), 131–135.Google Scholar
  25. Ross, S. M. (2012). A first course in probability. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  26. Santos, A. L., Pires, A. C. S., Behaine, J. J., Araújo, E. A., Andrade, N. J., & Carvalho, A. F. (2013). Effect of cleaning treatment on adhesion of Streptococcus agalactiae to milking machine surfaces. Food and Bioprocess Technology, 6(7), 1868–1872.CrossRefGoogle Scholar
  27. Schwarz, D., Diesterbeck, U. S., Failing, K., König, S., Brügemann, K., & Zschöck, M. (2010). Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany—a longitudinal study. Journal of Dairy Science, 93(12), 5716–5728.  https://doi.org/10.3168/jds.2010-3223.CrossRefGoogle Scholar
  28. Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy science and technology. Boca Raton: CRC Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Renan S. Lima
    • 1
  • Guilherme C. Danielski
    • 2
  • Ana Clarissa S. Pires
    • 1
  1. 1.Grupo de Termodinâmica Molecular Aplicada, Departamento de Tecnologia de AlimentosUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de Engenharia Elétrica e EletrônicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations