Skip to main content
Log in

Mastitis Detection and Prediction of Milk Composition Using Gas Sensor and Electrical Conductivity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Milk is a complex raw material, and it requires a strict quality control. The analyses that milk undergoes upon its arrival to the dairy industry are essential for its quality control. However, some of these analyses are complex; expensive; and in some cases, subjective, such as the detection of sub-clinical mastitis. With that in mind, a portable device was developed with the objective to create a fast, accurate, and easy-to-use tool for the detection of mastitis and for the evaluation of the overall quality of milk. Samples of bovine raw milk were evaluated for acidity, composition, somatic cell count (SCC), and electrical conductivity, coupled with gas sensor MQ-135, responsible for detecting carbon dioxide and ammonium, and gas sensor MQ-3, responsible for detecting ethanol, benzene, methane, hexane, and carbon monoxide. Through the MQ-135 measurement, it was possible to determine the occurrence of mastitis milk with a 77% accuracy, while MQ-3 did not show promising results. Besides, it was also possible to estimate acidity, lactose, protein, ashes, and casein content with the use of our portable device, with a satisfactory level of accuracy when milk components were found within their normal range of variation. The sensor device developed shows potential to provide a fast decision-making tool in the dairy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Association of Official Analytical Chemists - AOAC (1990). Official methods of analysis of international. 15 ed. Washington DC.

  • Association of Official Analytical Chemists - AOAC (2000). Official methods of analysis of international. 17 ed. Washington DC.

  • Bansal, B. K., Hamann, J., Grabowski, N. T., & Singh, K. B. (2005). Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. Journal of Dairy Research, 72(1), 144–152. https://doi.org/10.1017/S0022029905000798.

    Article  CAS  Google Scholar 

  • Brouk, M. J., Cvetkovic, B., Rice, D. W., Smith, B. L., Hinds, M. A., & Owens, F. N. (2011). Performance of lactating dairy cows fed corn as whole plant silage and grain produced from genetically modified corn containing event DAS-59122-7 compared to a nontransgenic near-isogenic control. Journal of Dairy Science, 94(4), 1961–1966. https://doi.org/10.3168/jds.2010-3477.

    Article  CAS  Google Scholar 

  • Chen, B., Lewis, M., & Grandison, A. (2014). Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chemistry, 158(1), 216–223. https://doi.org/10.1016/j.foodchem.2014.02.118.

    Article  CAS  Google Scholar 

  • Eriksson, A., Waller, K. P., Svennersten-Sjaunja, K., Haugen, J.-E., Lundby, F., & Lind, O. (2005). Detection of mastitic milk using a gas-sensor array system (electronic nose). International Dairy Journal, 15(1), 1193–1201. https://doi.org/10.1016/j.idairyj.2004.12.012.

    Article  CAS  Google Scholar 

  • Fourie, C.J., Van Der Westhuyzen P.J., & Van Niekerk P.C. (2007). An automated system for impedance measurements in milk. AFRICON 2007. IEEE.

  • Fröhling, A., Wienke, M., Rose-Meirhofer, S., & Schluter, O. (2010). Improved method for mastitis detection and evaluation of disinfectant efficiency during milking process. Food and Bioprocess Technology, 3(1), 892–900. https://doi.org/10.1007/s11947-010-0366-9.

    Article  Google Scholar 

  • Hauke, J., & Kossowski, T. (2011). Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae, 30(2), 87–93.

    Article  Google Scholar 

  • Hettinga, K. A. (2008). Quality control of raw cow's milk by headspace analysis. International Dairy Journal, 18(5), 506–513. https://doi.org/10.1016/j.idairyj.2007.10.005.

    Article  CAS  Google Scholar 

  • Hettinga, K. A., van Valenberg, H. J. F., Lam, T. J. G. M., & van Hooijdonk, A. C. M. (2009). The origin of the volatile metabolites found in mastitis milk. Veterinary Microbiology, 137(3–4), 384–387. https://doi.org/10.1016/j.vetmic.2009.01.016.

    Article  CAS  Google Scholar 

  • Inalpulat, M., Kizil, Ü., Bilgücü, E., & Genç, L. (2016). E-nose identification of milk somatic cell count. Journal of Graduate School of Natural and Applied Sciences, 2(1), 22–35.

    Google Scholar 

  • Kessels, J. A., Cha, E., Johnson, S. K., Welcome, F. L., Kristensen, A. R., & Gröhn, Y. T. (2016). Economic comparison of common treatment protocols and J5 vaccination for clinical mastitis in dairy herds using optimized culling decisions. Journal of Dairy Science, 99(5), 3838–3847. https://doi.org/10.3168/jds.2015-10385.

    Article  CAS  Google Scholar 

  • Khatun, M., Clark, C. E. F., Lyons, N. A., Thomson, P. C., Kerrisk, K. L., & García, S. C. (2017). Early detection of clinical mastitis from electrical conductivity data in an automatic milking system. Animal Production Science, 57(7), 1226–1232. https://doi.org/10.1071/AN16707.

    Article  Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical model. Chicago, IL: McGraw-Hill/Irwin.

    Google Scholar 

  • Le Maréchal, C., Hernandez, D., Schrenzel, J., Even, S., Berkova, N., Thiery, R., Vautor, E., Fitzgerald, J. R., Francois, P., Le Loir, Y. (2011). Genome sequences of two staphylococcus aureus ovine strains that induce severe (Strain O11) and mild (Strain O46) mastitis. Journal of Bacteriology, 193(9), 2353–2354.

  • Lien, C.-C., Wan, Y.-N., & Ting, C.-H. (2016). Online detection of dairy cow subclinical mastitis using electrical conductivity indices of milk. Engineering in Agriculture, Environment and Food, 9(3), 201–207. https://doi.org/10.1016/j.eaef.2015.12.002.

    Article  Google Scholar 

  • Longo, R. M., Ferreira, L. F., Feijo, F. D. A. C., Conrrado, R. S., Costa, M. E. R., & Cerqueira, M. M. O. P. (2016). Lipolysis effect on milk fat and protein analysis by infrared spectroscopy using filter and Fourier transform infrared (FTIR) methods. Journal of Animal Science, 94(1), 267–267. https://doi.org/10.2527/jam2016-0561.

    Article  Google Scholar 

  • Machado, S. C., Fischer, V., Stumpf, M. T., & Stivanin, S. C. B. (2017). Seasonal variation, method of determination of bovine milk stability, and its relation with physical, chemical, and sanitary characteristics of raw milk. Revista Brasileira de Zootecnica, 46(4), 340–347. https://doi.org/10.1590/s1806-92902017000400010.

    Article  Google Scholar 

  • Mekibib, B., Furgasa, M., Abunna, F., Megersa, B., & Regassa, A. (2010). Bovine mastitis: prevalence, risk factors and major pathogens in dairy farms of Holeta town, Central Ethiopia. Veterinary World, 3(9), 397–403. https://doi.org/10.5455/vetworld.2010.397-403.

    Article  Google Scholar 

  • Press, W., Flannery, B., Teukolsky, S., Vetterling, W. (2007). Numerical recipes. In: Fortran numerical recipes: the art of scientific computing, vol. 1, Cambridge University press, 1992.

  • Pyorala, S. (2003). Indicators of inflammation in the diagnosis of mastitis. Veterinary Research, 34(1), 565–578. https://doi.org/10.1051/vetres:2003026.

    Article  Google Scholar 

  • Reinemann, D.J., & Helgren, J.M. (2004). Online milk sensing issues for automatic milking. 2004 ASAE/CSAE annual international meeting, Ottawa, Ontario, Canada, paper number 04-4191.

  • Ribeiro, A. B. C., Santos, J. S., Zanol, D., Lombarde, L. N. L., Bruzaroski, S. R., Ludovico, A., & Santana, E. H. W. (2016). Evaluation of an electrical conductivity portable device as an alternative for subclinical mastitis detection. Revista de Salud Animal, 38(2), 131–135.

    Google Scholar 

  • Ross, S. M. (2012). A first course in probability. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Santos, A. L., Pires, A. C. S., Behaine, J. J., Araújo, E. A., Andrade, N. J., & Carvalho, A. F. (2013). Effect of cleaning treatment on adhesion of Streptococcus agalactiae to milking machine surfaces. Food and Bioprocess Technology, 6(7), 1868–1872.

    Article  Google Scholar 

  • Schwarz, D., Diesterbeck, U. S., Failing, K., König, S., Brügemann, K., & Zschöck, M. (2010). Somatic cell counts and bacteriological status in quarter foremilk samples of cows in Hesse, Germany—a longitudinal study. Journal of Dairy Science, 93(12), 5716–5728. https://doi.org/10.3168/jds.2010-3223.

    Article  CAS  Google Scholar 

  • Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2006). Dairy science and technology. Boca Raton: CRC Press.

    Google Scholar 

Download references

Funding

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Clarissa S. Pires.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R.S., Danielski, G.C. & Pires, A.C.S. Mastitis Detection and Prediction of Milk Composition Using Gas Sensor and Electrical Conductivity. Food Bioprocess Technol 11, 551–560 (2018). https://doi.org/10.1007/s11947-017-2029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2029-6

Keywords

Navigation