Skip to main content
Log in

Antimicrobial Activity of Binary and Ternary Mixtures of Vanillin, Citral, and Potassium Sorbate in Laboratory Media and Fruit Purées

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The susceptibility of Escherichia coli, Salmonella enteritidis, Saccharomyces cerevisiae, and Zygosaccharomyces bailii to binary and ternary mixtures of potassium sorbate (KS), vanillin (V), and citral (C) was evaluated according to the Berenbaum experimental design, in laboratory media. For some V/C combinations, KS inhibitory concentrations were determined in agarized melon and mango purées by the spiral gradient endpoint (SGE) method. In laboratory media, inhibitory antimicrobial combinations were generally additives. For the yeasts, some synergistic effects were observed. All Berenbaum mixtures which resulted inhibitory in laboratory media were confirmed in the fruit purées. When the SGE method was used, several inhibitory ternary mixtures were found. The lowest inhibitory KS concentrations, estimated for a given V/C combination, corresponded to the bacteria assayed in melon purée. Z. bailii was not inhibited at any condition. Some synergistic antimicrobial combinations (595 ppm V + 251 ppm C + 8 ppm KS in melon and 280 ppm V + 123 ppm C + 8 ppm KS in mango purées) could be useful to achieve a desired inhibitory effect in fruit purées while reducing their concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adorjan, B., & Buchbauer, G. (2010). Biological properties of essential oils: an updated review. Flavour and Fragance Journal, 25, 407–426.

    Article  CAS  Google Scholar 

  • Alzamora, S., Guerrero, S., López-Malo, A., Welti-Chanes, J., Palou, E. & Argaiz, A. (2005). Combined preservation techniques for fresh fruit. In W. Jongen (Ed.), Improving the safety of fresh fruit and vegetables (pp. 599–630). Woodhead Publishing Series in Food Science, Technology and Nutrition, Elsevier.

  • Berenbaum, M., Yu, V., & Felegie, T. (1983). Synergy with double and triple antibiotic combinations compared. Journal of Antimicrobial Chemotherapy, 12, 555–563.

    Article  CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.

    Article  CAS  Google Scholar 

  • Cava-Roda, R. M., Taboada-Rodríguez, A., Valverde-Franco, M. T., & Marín-Iniesta, F. (2012). Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157: H7 in milk. Food and Bioprocess Technology, 5, 2120–2131.

    Article  CAS  Google Scholar 

  • Char, C., Guerrero, S., & Alzamora, S. M. (2008). Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control, 20, 67–74.

    Article  Google Scholar 

  • Char, C., Guerrero, S., & Alzamora, S. M. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food and Bioprocess Technology, 3, 752–776.

    Article  Google Scholar 

  • Davidson, P. M., & Parish, M. E. (1989). Methods for testing the efficacy of food antimicrobials. Food Technology, 43, 148–155.

    CAS  Google Scholar 

  • Davidson, P., Taylor, T., & Schmidt, S. (2012). Chemical preservatives and natural antimicrobial compounds. In M. P. Doyle & R. Beuchat (Eds.), Food microbiology: fundamentals and frontiers (pp. 765–801). Washington, DC: ASM Press.

    Google Scholar 

  • Ferrante, S., Guerrero, S., & Alzamora, S. (2007). Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange juice. Journal of Food Protection, 8, 1850–1856.

    Article  Google Scholar 

  • Fitzgerald, D., Stratford, M., & Narbad, A. (2003). Analysis of the inhibition of food spoilage yeasts by vanillin. International Journal of Food Microbiology, 86, 113–122.

    Article  CAS  Google Scholar 

  • Fleet, G. (1992). Spoilage yeasts. Critical Reviews in Biotechnology, 112, 1–44.

    Article  Google Scholar 

  • Fu, Y., Sarkar, P., Bhunia, A., & Yao, Y. (2016). Delivery systems of antimicrobial compounds to food. Trends in Food Science and Technology, 57, 165–177.

    Article  CAS  Google Scholar 

  • Guerrero, S., Alzamora, S., & Gerschenson, L. (1996). Optimization of a combined factors technology for preserving banana purée to minimize colour changes using the response surface methodology. Journal of Food Engineering, 28, 307–322.

    Article  Google Scholar 

  • Guerrero, S., Ferrario, M., Schenk, M., & García Carrillo, M. (2017). Hurdle technology using ultrasound for food preservation. In D. Bermudez-Aguirre (Ed.), Ultrasound: advances for food processing and preservation. (pp. 39–100). London: Elsevier Academic Press.

  • Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2009). Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiology, 26, 142–150.

    Article  CAS  Google Scholar 

  • Heaton, J. C., & Jones, K. (2008). Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of Applied Microbiology, 104, 613–626.

    Article  CAS  Google Scholar 

  • Khanipour, E., Flint, S., McCarthy, O., Golding, M., Palmer, J., & Tamplin, M. (2014). Evaluation of the effects of sodium chloride, potassium sorbate, nisin and lysozyme on the probability of growth of Clostridium sporogenes. International Journal of Food Science and Technology, 49, 1506–1512.

    Article  CAS  Google Scholar 

  • Lanciotti, R., Gianotti, A., Patrignani, F., Belleti, N., Guerzoni, M. E., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends of Food Science and Technology, 15, 201–208.

    Article  CAS  Google Scholar 

  • Lee, N., & Paik, H. (2016). Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean Journal for Food Science of Animal Resources, 36, 547–557.

    Article  Google Scholar 

  • Leite, M. C., Bezerra, A. P., Sousa, J. P., Guerra, F. Q., & Lima, E. D. (2014). Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2014/378280.

  • Lima, I. O., de Medeiros Nóbrega, F., de Oliveira, W. A., de Oliveira Lima, E., Albuquerque Menezes, E., Afrânio Cunha, F., & de Fátima Formiga Melo Diniz, M. (2012). Anti-Candida albicans effectiveness of citral and investigation of mode of action. Pharmaceutical Biology, 50, 1536–1541.

    Article  CAS  Google Scholar 

  • López-Malo, A., Palou, E., León-Cruz, R., & Alzamora, S. (2006). Mixture of natural and synthetic antifungal agents. Advances in Food Mycology, 571, 261–286.

    Article  Google Scholar 

  • McCance, R. A. & Widdowson, E. M. (1993). The composition of foods. Cambridge: Royal Society of Chemistry.

  • Mihajlovic, B., Dixon, B., Couture, H., & Farber, J. (2013). Qualitative microbiological risk assessment of unpasteurized fruit juice and cider. International Food Risk Analysis Journal, 3, 6. https://doi.org/10.5772/57161.

    Google Scholar 

  • Panda, S. (2012). Screening methods in the study of antimicrobial properties of medicinal plants. International Journal of Biotechnology and Research, 2, 1–35.

    Google Scholar 

  • Pina-Pérez, M., Rodrigo, D. & Martinez, A. (2015). Using natural antimicrobials to enhance the safety and quality of fruit- and vegetable-based beverages. In M. Taylor (Ed.), Handbook of natural antimicrobials for food safety and quality. (pp. 327–-345). Woodhead Publishing Series in Food Science, Technology and Nutrition. Elsevier Academic Press.

  • Rivera, G., Bocanegra-García, V., & Monge, A. (2010). Traditional plants as source of functional foods: a review. Plantas tradicionales como fuente de alimentos funcionales: Una revisión. Revista de Ciencia y Tecnología de la Universidad Nacional de Misiones, 8, 159–167.

    Google Scholar 

  • Santiesteban-López, A., Palou, E., & López-Malo, A. (2007). Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected aw and pH. Journal of Applied Microbiology, 102, 486–497.

    Article  Google Scholar 

  • Sethi, S. & Gupta, S. (2016). Antimicrobial spices: use in antimicrobial packaging. In J. Barros-Velázquez (Ed.), Antimicrobial food packaging (pp. 433–444). Elsevier Inc.

  • Shi, C., Song, K., Zhang, X., Sun, Y., Sui, Y., Chen, Y., Jia, Z., Sun, H., Sun, Z., & Xia, X. (2016). Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS One. https://doi.org/10.1371/journal.pone.0159006.

  • Smoot, L., & Pierson, M. (1981). Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination. Applied and Environmental Microbiology, 42, 477–483.

    CAS  Google Scholar 

  • Sofos, J. (2000). Sorbic acid. In A. Naidu (Ed.). Natural food antimicrobial systems. Boca Raton: CRC Press. https://doi.org/10.1201/9781420039368.

  • Sofos, J., & Busta, F. (1981). Antimicrobial activity of sorbate. Journal of Food Protection, 44, 614–622.

    Article  CAS  Google Scholar 

  • Somolinos, M., García, D., Condón, S., Mackey, B., & Pagán, R. (2009). Inactivation of Escherichia coli by citral. Journal of Applied Microbiology, 108, 1928–1939.

    Article  Google Scholar 

  • Tao, N., OuYang, Q., & Jia, L. (2014). Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control, 41, 116–121.

    Article  CAS  Google Scholar 

  • Yemiş, G. P., Pagotto, F., Bach, S., & Delaquis, P. (2011). Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. Journal of Food Protection, 74, 2062–2069.

    Article  Google Scholar 

  • Zhou, H., Tao, N., & Jia, L. (2014). Antifungal activity of citral, octanal and 훼-terpineol against Geotrichumcitri-aurantii. Food Control, 37, 277–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Guerrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenk, M., Ferrario, M. & Guerrero, S. Antimicrobial Activity of Binary and Ternary Mixtures of Vanillin, Citral, and Potassium Sorbate in Laboratory Media and Fruit Purées. Food Bioprocess Technol 11, 324–333 (2018). https://doi.org/10.1007/s11947-017-2013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2013-1

Keywords

Navigation