Skip to main content
Log in

Rheological Effect of Gelatinisation Using Different Temperature-Time Conditions on Potato Starch Dispersions: Mechanical Characterisation of the Obtained Gels

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The influence of temperature-time gelatinisation conditions on the gel forming kinetics and final gel mechanical features of commonly used starches as potato starch was studied. The proximate physicochemical properties of potato starch as well as the thermorheological and textural characteristics of the corresponding potato starch gels (native, NPS, and at different GD, PS) were determined. Thermorheological testing at small amplitude oscillatory shear and texture profile analysis were used to evaluate the systems structure evolution and the final gel texture, respectively. High purity (total starch content > 98.5 ± 0.7% dry basis, d.b.), intermediate amylose content (21.2 ± 0.8%), low damaged starch levels (2.7 ± 0.8%), crystallinity (B-pattern) level of 22.9 ± 1.1% and average particle size (60.3 ± 4.3 μm) were the main physicochemical features of tested NPS. Rheological outcomes indicated that only potato starch samples heated at temperatures above 50 °C for tested gelatinisation times were able to form gels. The largest gel strength was identified for NPS, PS70:20 (temperature/time) and PS80 independently of gelatinisation time. Viscoelasticity of PS85 and PS90 gels significantly drop with increasing temperature-time gelatinisation conditions. Temperatures between peak (58 °C) and final (70 °C) gelatinisation temperatures favour the formation of stronger and fully thermal reversible gels, remaining practically invariant until 80 °C. Texture studies indicated that an acceptable linear dependence (R 2 > 0.96) between viscoelastic gel properties determined by rheology and textural parameters can be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modification and applications of starches from different botanical sources. Food Science and Technology, 35, 215–236.

    Article  Google Scholar 

  • AOAC. (2000). Official Methods of Analysis (17th ed.). Washington: Association of Official Analytical Chemistry.

    Google Scholar 

  • ASAE Standards. (1995). S319.2: Methods for determining and expressing fineness of feed materials by sieving. Michigan: American Society of Agricultural Engineers.

    Google Scholar 

  • Bhattacharjya, B., Dutta, H., Patwari, K., & Mahanta, C. L. (2015). Properties of annealed jackfruit (Artocarpus heterophyllus Lam.) seed starch. Acta Alimentaria, 44, 501–510.

    Article  CAS  Google Scholar 

  • Brites, C., Trigo, M. J., Santos, C., Collar, C., & Rosell, C. M. (2008). Maize based gluten-free bread: influence of processing parameters on sensory and instrumental quality. Food Bioprocess Technology, 3, 707–715.

    Article  Google Scholar 

  • Charoenkul, N., Uttapap, D., Pathipanawat, W., & Takeda, Y. (2011). Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures. LWT - Food Science and Technology, 44, 1774–1781.

    Article  CAS  Google Scholar 

  • Cheetham, N. W. H., & Tao, L. (1998). Variation in crystallinity type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36, 277–284.

    Article  CAS  Google Scholar 

  • Chenlo, F., Moreira, R., Prieto, D. M., & Torres, M. D. (2011). Desorption isotherms and net isosteric heat of chestnut flour and starch. Food and Bioprocess Technology, 4, 1497–1504.

    Article  Google Scholar 

  • Cornejo-Villegas, M. A., Acosta-Osorio, A. A., Rojas-Molina, I., Gutiérrez-Cortéz, E., Quiroga, M. A., Gaytán, M., Herrera, G., & Rodríguez-García, M. E. (2010). Study of the physicochemical and pasting properties of instant corn flour added with calcium and fibers from nopal powder. Journal of Food Engineering, 96, 401–409.

    Article  CAS  Google Scholar 

  • Correia, P., Cruz-Lopes, L., & Beirão-da-Costa, L. (2012). Morphology and structure of chestnut starch isolated by alkali and enzymatic methods. Food Hydrocolloids, 28, 313–319.

    Article  CAS  Google Scholar 

  • Genovese, D. B., & Rao, M. A. (2003). Role of starch granule characteristics (volume fraction, rigidity and fractal dimension) on rheology of starch dispersions with and without amylose. Cereal Chemistry, 80, 350–355.

    Article  CAS  Google Scholar 

  • Glampedaki, P., Petzold, G., Dutschk, V., Miller, R., & Warmoeskerken, M. C. G. (2012). Physicochemical properties of biopolymer-based polyelectrolyte complexes with controlled pH/thermo-responsiveness. Reactive and Functional Polymers, 72, 458–468.

    Article  CAS  Google Scholar 

  • Gunaratne, A., & Hoover, R. (2002). Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers, 49, 425–437.

    Article  CAS  Google Scholar 

  • Houben, A., Götz, H., Mitzscherling, M., & Becker, T. (2010). Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. Journal of Cereal Science, 51, 350–356.

    Article  Google Scholar 

  • Jan, K. N., Panesar, P. S., Rana, J. C., & Singh, S. (2017). Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. International Journal of Biological Macromolecules, 102, 315–322.

    Article  CAS  Google Scholar 

  • Jena, R., & Bhattacharya, S. (2003). Viscoelastic characterization of rice gel. Journal of Texture Studies, 34, 349–360.

    Article  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5, 2058–2076.

    Article  Google Scholar 

  • Joshi, M., Aldred, P., Panozzo, J. F., & Kasapis, S. (2014). Rheological and microstructural characteristics of lentil starch-lentil protein composite pastes and gels. Food Hydrocolloids, 35, 226–237.

    Article  CAS  Google Scholar 

  • Lagarrigue, S., & Alvarez, G. (2010). The rheology of starch dispersions at high temperature and high shear rates: a review. Journal of Food Engineering, 50, 189–202.

    Article  Google Scholar 

  • Lai, P., Li, K. Y., Lu, S., & Chen, H. H. (2011). Physicochemical characteristics of rice starch supplemented with dietary fibre. Food Chemistry, 127, 153–158.

    Article  CAS  Google Scholar 

  • Lan, W., Hihua, Y., Yun, Z., Bijun, X., & Zhida, S. (2008). Morphological, physicochemical and textural properties of starch separated from Chinese water chestnut. Starch-Starke, 60, 181–191.

    Article  Google Scholar 

  • Lawal, O. S., Lapasin, R., Bellich, B., Olayiwola, T. O., Cesàro, A., Yoshimura, M., & Nishinari, K. (2011). Rheology and functional properties of starches isolated from five improved rice varieties from West Africa. Food Hydrocolloids, 25, 1785–1792.

    Article  CAS  Google Scholar 

  • Li, G., Wang, S., & Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137, 328–338.

    Article  Google Scholar 

  • Malumba, P., Jacquet, N., Delimme, G., Lefebvre, F., & Béra, F. (2013). The swelling behavior of wheat starch granules during isothermal and non-isothermal treatments. Journal of Food Engineering, 114, 199–206.

    Article  CAS  Google Scholar 

  • Manohar, R. S., & Rao, P. H. (2002). Interrelationship between rheological characteristic of dough and quality of biscuits; use of elastic recovery of dough to predict biscuit quality. Food Research International, 35, 807–813.

    Article  Google Scholar 

  • Marco, C., & Rosell. (2008). Rice. In E. K. Arendt & F. Dal Bello (Eds.), Gluten free cereal product and beverages. London: Academic Press.

  • Moreira, R., Chenlo, F., Torres, M. D., & Glazer, J. (2012). Rheological properties of gelatinized chestnut starch dispersions: effect of concentration and temperature. Journal of Food Engineering, 112, 94–99.

    Article  CAS  Google Scholar 

  • Moreira, R., Chenlo, F., Torres, M. D., & Rama, B. (2013). Influence of the chestnuts drying temperature on the rheological properties of their doughs. Food and Bioproducts Processing, 91, 7–13.

    Article  Google Scholar 

  • Nunes, M. C., Raymundo, A., & Sousa, I. (2006). Rheological behaviour and microstructure of pea protein/k-carrageenan/starch gels with different setting conditions. Food Hydrocolloids, 20, 106–113.

    Article  CAS  Google Scholar 

  • Onyango, C., Unbehend, G., & Lindhuaer, M. G. (2009). Effect of cellulose-derivatives and emulsifiers on creep-recovery and crumb properties of gluten-free bread prepared from sorghum and gelatinized starch. Food Research International, 42, 949–955.

    Article  CAS  Google Scholar 

  • Pérez-Santos, D. M., Velazquez, G., Canonico-Franco, M., Morales-Sanchez, E., Gaytan-Martínez, M., Yañez-Limon, J. M., & Herrera-Gomez, A. (2016). Modelling the limited degree of starch gelatinization. Starch/Stärke, 68, 727–733.

    Article  Google Scholar 

  • Przetaczek-Roznowska, I. (2017). Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches. International Journal of Biological Macromolecules, 101, 536–542.

    Article  CAS  Google Scholar 

  • Santos, E., Rosell, C. M., & Collar, C. (2008). Retrogradation kinetics of high fibre wheat flour blends: a calorimetric approach. Cereal Chemistry, 85, 450–458.

    Article  Google Scholar 

  • Sasaki, T., Kohyama, K., & Yasui, T. (2004). Effect of water-soluble and insoluble non-starch polysaccharides isolated from wheat flour on the rheological properties of wheat starch gel. Carbohydrate Polymers, 57, 451–458.

    Article  CAS  Google Scholar 

  • Sheikha, A. F. E., & Ray, R. C. (2017). Potential impacts of bioprocessing of sweet potato: review. Critical Reviews in Food Science and Nutrition, 57, 455–471.

    Article  Google Scholar 

  • Sodhi, N. S., Sasaki, T., Lu, Z.-H., & Kohyama, K. (2010). Phenomenological viscoelasticity of some rice starch gels. Food Hydrocolloids, 24, 512–517.

    Article  CAS  Google Scholar 

  • Tananuwong, K., & Reid, D. (2004). DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydrate Polymers, 58, 345–358.

  • Torres, M. D., Chenlo, F., & Moreira, R. (2017). Thermal reversibility of kappa/iota-hybrid carrageenan gels extracted from Mastocarpus stellatus at different ionic strengths. Journal of the Taiwan Institute of Chemical Engineers, 71, 414–420.

    Article  CAS  Google Scholar 

  • Torres, M. D., Fradinho, P., Raymundo, A., & Sousa, I. (2014a). Thermorheological and textural behaviour of gluten-free gels obtained from chestnut and rice flours. Food and Bioprocess Technology, 7, 1171–1182.

    Article  CAS  Google Scholar 

  • Torres, M. D., Moreira, R., Chenlo, F., Morel, M. H., & Barron, C. (2014b). Physicochemical and structural properties of starch isolated from fresh and dried chestnuts and chestnut flour. Food Technology and Biotechnology, 52, 135–139.

    CAS  Google Scholar 

  • Wang, H., Zhang, B., Chen, L., & Li, X. (2016). Understanding the structure and digestibility of heat-moisture treated starch. International Biological Macromolecules, 88, 1–8.

    Article  CAS  Google Scholar 

  • Wani, I. A., Sogi, D. S., Hamdani, A. M., Gani, A., Bhat, N. A., & Shah, A. (2016). Isolation, composition, and physicochemical properties of starch from legumes: a review. Starch/Strakë, 68, 834–845.

    Article  CAS  Google Scholar 

  • Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Starch blends and their physicochemical properties. Starch-Starke, 67, 1–13.

    Article  CAS  Google Scholar 

  • Witczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2015). Starch and starch derivatives in gluten-free systems—a review. Journal of Cereal Science, 67, 46–57.

    Article  Google Scholar 

  • Zhang, D., Mu, T., & Sun, H. (2017a). Calorimetric, rheological, and structural properties of potato protein and potato starch composites and gels. Starch/Stärke, 69, 1600329.

  • Zhang, B., Selway, N., Shelata, K. J., Dhital, S., Stokes, J. R., & Gidleya, M. J. (2017b). Tribology of swollen starch granule suspensions from maize and potato. Carbohydrate Polymers, 155, 128–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support (ED431B) to the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) and the use of RIAIDT-USC analytical facilities for X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, M.D., Chenlo, F. & Moreira, R. Rheological Effect of Gelatinisation Using Different Temperature-Time Conditions on Potato Starch Dispersions: Mechanical Characterisation of the Obtained Gels. Food Bioprocess Technol 11, 132–140 (2018). https://doi.org/10.1007/s11947-017-2000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2000-6

Keywords

Navigation