Skip to main content

Advertisement

Log in

Synergistic Processing of Skim Milk with High Pressure Nitrous Oxide, Heat, Nisin, and Lysozyme to Inactivate Vegetative and Spore-Forming Bacteria

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Individual and combined effects of high pressure nitrous oxide (HPN2O), heat, and antimicrobials on the inactivation of Escherichia coli, Listeria innocua, and Bacillus atrophaeus endospores in milk were all evaluated after 20-min treatments. Stand-alone milk treatments with HPN2O (15.2 MPa), heat (45 and 65 °C), or nisin (50 and 150 IU mL−1) resulted in log10 reductions ranging only from 0.1 to 2.1 for E. coli and L. innocua. Combining HPN2O (15.2 MPa) with heat (65 °C) inactivated 6.0 and 5.1 log10 in the vegetative bacteria, respectively. Similarly, reductions of 5.9 and ≥ 6.0 log10 of respective E. coli and L. innocua cells in milk were achieved through a combination of HPN2O (15.2 MPa), heat (65 °C), and nisin (150 IU mL−1). A 2.5 log10 cycle inactivation of spores was obtained by HPN2O, nisin (at both 50 and 150 IU mL−1), and lysozyme (50 μg mL−1) at 85 °C. Combining these processing techniques resulted in significantly greater microbial inactivation (p < 0.05) than the sum of individual reductions from each treatment alone, indicating synergistic effects. HPN2O irrespective of processing temperatures did not cause any occurrence of sub-lethally injured cells or disruption in colloidal stability of milk at 65 and 85 °C (p ≥ 0.05). Color and pH changes in milk following the most demanding treatment conditions were minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anema, S. G., & Klostermeyer, H. (1997). Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 °C. Journal of Agricultural and Food Chemistry, 45, 1108–1115.

    Article  CAS  Google Scholar 

  • Balaban, M. O., & Duong, T. (2014). Dense phase carbon dioxide research: current focus and directions. Agriculture and Agricultural Science Procedia, 2, 2–9.

    Article  Google Scholar 

  • Barry, A. L. (1976). The antimicrobic susceptibility test: principles and practices. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Beliciu, C. M., & Moraru, C. I. (2009). Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering. Journal of Dairy Science, 92, 1829–1839.

    Article  CAS  Google Scholar 

  • Bhatti, M., Veeramachaneni, A., & Shelef, L. A. (2004). Factors affecting the antilisterial effects of nisin in milk. International Journal of Food Microbiology, 97, 215–219.

    Article  CAS  Google Scholar 

  • Bi, X., Wang, Y., Zhao, F., Zhang, Y., Rao, L., Liao, X., et al. (2014). Inactivation of Escherichia coli O157:H7 by high pressure carbon dioxide combined with nisin in physiological saline, phosphate-buffered saline and carrot juice. Food Control, 41, 139–146.

    Article  CAS  Google Scholar 

  • Bizzotto, S., Vezzù, K., Bertucco, A., & Bertoloni, G. (2009). Non-thermal pasteurization of tomato puree by supercritical CO2 and N2O. In: Proceedings 9th international symposium supercritical fluids (p. P183).

  • Boziaris, I. S., & Adams, M. R. (1999). Effect of chelators and nisin produced in situ on inhibition and inactivation of gram negatives. International Journal of Food Microbiology, 53, 105–113.

    Article  CAS  Google Scholar 

  • Cadesky, L., Walkling-Ribeiro, M., Kriner, K. T., Karwe, M. V., & Moraru, C. I. (2017). Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates. Journal of Dairy Science. doi:10.3168/jds.2016-12072.

  • CFR (1998). Code of Federal Regulation 21CFR184; Docket No. 89G-0393. Lysozyme. http://www.gpo.gov/fdsys/granule/FR-1998-03-13/98-6571. Accessed 23 June 2015.

  • CFR (2006). Code of Federal Regulation 21CFR184.1538. Nisin preparation. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1538. Accessed 23 June 2015.

  • Chugh, A., Khanal, D., Walkling-Ribeiro, M., Corredig, M., Duizer, L., & Griffiths, M. W. (2014). Change in color and volatile composition of skim milk processed with pulsed electric field and microfiltration treatments or heat pasteurization. Foods, 3, 250–268.

  • Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science and Emerging Technologies, 7, 49–54.

    Article  CAS  Google Scholar 

  • De Arauz, L. J., Jozala, A. F., Mazzola, P. G., & Vessoni Penna, T. C. (2009). Nisin biotechnological production and application: a review. Trends in Food Science and Technology, 20, 146–154.

    Article  Google Scholar 

  • De Buyser, M. L., Dufour, B., Maire, M., & Lafarge, V. (2001). Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. International Journal of Food Microbiology, 67, 1–17.

    Article  Google Scholar 

  • Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie Leeuwenhoek, 69, 193–202.

    Article  CAS  Google Scholar 

  • Delves-Brougthon, J. (1990). Nisin and its uses as a food preservative. Food Technology, 44, 100–117.

    Google Scholar 

  • Erkmen, O. (2000a). Antimicrobial effect of pressurized carbon dioxide on Enterococcus faecalis in physiological saline and foods. Journal of the Science of Food and Agriculture, 80, 465–470.

    Article  CAS  Google Scholar 

  • Erkmen, O. (2000b). Inactivation of Salmonella typhimurium by high pressure carbon dioxide. Food Microbiology, 17, 225–232.

    Article  CAS  Google Scholar 

  • Erkmen, O. (2000c). Effect of carbon dioxide pressure on Listeria monocytogenes in physiological saline and foods. Food Microbiology, 17, 589–596.

    Article  CAS  Google Scholar 

  • Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. New York: Blackie Academic.

    Google Scholar 

  • Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., et al. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. International Journal of Food Microbiology, 117, 1–28.

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez, L., Geeraerd, A. H., Mast, J., Briers, Y., Elst, K., Van Ginneken, L., et al. (2010). Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiology, 27, 541–549.

    Article  CAS  Google Scholar 

  • Gasperi, F., Aprea, E., Biasioli, F., Carlin, S., Endrizzi, I., Pirretti, G., et al. (2009). Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chemistry, 115, 129–136.

    Article  CAS  Google Scholar 

  • Greenberg, D. L., Busch, J. D., Keim, P., & Wagner, D. M. (2010). Identifying experimental surrogates for Bacillus anthracis spores: a review. Investigative Genetics, 1, 4.

    Article  Google Scholar 

  • Gülseren, İ., Alexander, M., & Corredig, M. (2010). Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification. Journal of Colloid and Interface Science, 351, 493–500.

    Article  Google Scholar 

  • Hauben, K. J., Wuytack, E. Y., Soontjens, C. C., & Michiels, C. W. (1996). High-pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer-membrane permeability. Journal of Food Protection, 59, 350–355.

    Article  CAS  Google Scholar 

  • Henriques, A. O., & Moran, C. P. (2000). Structure and assembly of the bacterial endospore coat. Methods, 20, 95–110.

    Article  CAS  Google Scholar 

  • Hong, S. I., & Pyun, Y. R. (2001). Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. International Journal of Food Microbiology, 63, 19–28.

    Article  CAS  Google Scholar 

  • Iucci, L., Patrignani, F., Vallicelli, M., Guerzoni, M. E., & Lanciotti, R. (2007). Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control, 18, 558–565.

    Article  CAS  Google Scholar 

  • Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology (7th ed.). New York: Springer Science.

    Google Scholar 

  • Jou, F. Y., Carroll, J. J., Mather, A. E., & Otto, F. D. (1992). The solubility of nitrous oxide in water at high temperatures and pressures. Zeitschrift für Physikalische Chemie, 177, 225–239.

    Article  CAS  Google Scholar 

  • Kim, S. R., Park, H. J., Kim, H. T., Choi, I. G., & Kim, K. H. (2008). Analysis of survival rates and cellular fatty acid profiles of Listeria monocytogenes treated with supercritical carbon dioxide under the influence of co-solvents. Journal of Microbiological Methods, 75, 47–54.

    Article  CAS  Google Scholar 

  • Lai, E. M., Phadke, N. D., Kachman, M. T., Giorno, R., Vazquez, S., Vazquez, J. A., et al. (2003). Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. Journal of Bacteriology., 185, 1443–1454.

    Article  CAS  Google Scholar 

  • Leistner, L. (1985). Hurdle technology applied to meat products of the shelf stable product and intermediate moisture food types. In D. Simatos & J. L. Multon (Eds.), Properties of water in foods in relation to quality and stability (p. 309). Dordrecht: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Liao, H., Zhang, F., Liao, X., Hu, X., Chen, Y., & Deng, L. (2010). Analysis of Escherichia coli cell damage induced by HPCD using microscopies and fluorescent staining. International Journal of Food Microbiology, 144, 169–176.

    Article  CAS  Google Scholar 

  • López-Pedemonte, T. J., Roig-Sagués, A. X., Trujillo, A. J., Capellas, M., & Guamis, B. (2003). Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. Journal of Dairy Science, 86, 3075–3081.

    Article  Google Scholar 

  • Masschalck, B., Van Houdt, R., Van Haver, E. G. R., & Michiels, C. W. (2001). Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Applied and Environmental Microbiology, 67, 339–344.

    Article  CAS  Google Scholar 

  • Mayayo, C., Montserrat, M., Ramos, S. J., Martínez-Lorenzo, M. J., Calvo, M., Sánchez, L., & Pérez, M. D. (2016). Effect of high pressure and heat treatments on IgA immunoreactivity and lysozyme activity in human milk. European Food Research and Technology, 242, 891–898.

    Article  CAS  Google Scholar 

  • Mun, S., Hahn, J. S., Lee, Y. W., & Yoon, J. (2011). Inactivation behavior of Pseudomonas aeruginosa by supercritical N2O compared to supercritical CO2. International Journal of Food Microbiology, 144, 372–378.

    Article  CAS  Google Scholar 

  • Mun, S., Kim, J., Ahn, S. J., Lee, Y. W., & Yoon, J. (2012). Bactericidal effect of supercritical N2O on Staphylococcus aureus and Escherichia coli. International Journal of Food Microbiology, 153, 15–20.

    Article  CAS  Google Scholar 

  • Oliver, S. P., Jayarao, B. M., & Almeida, R. A. (2005). Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodbourne Pathogens & Disease, 2, 115–129.

    Article  CAS  Google Scholar 

  • Orlien, V., Boserup, L., & Olsen, K. (2010). Casein micelle dissociation in skim milk during high-pressure treatment: effects of pressure, pH, and temperature. Journal of Dairy Science, 93, 12–18.

    Article  CAS  Google Scholar 

  • Ponce, E., Pla, R., Sendra, E., Guamis, B., & Mor-Mur, M. (1998). Combined effect of nisin and high hydrostatic pressure on destruction of Listeria innocua and Escherichia coli in liquid whole egg. International Journal of Food Microbiology, 43, 15–19.

    Article  CAS  Google Scholar 

  • Proctor, V. A., Cunningham, F. E., & Fung, D. Y. (1988). The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 26, 359–395.

    Article  CAS  Google Scholar 

  • Raynie, D. E. (1993). Warning concerning the use of nitrous oxide in supercritical fluid extractions. Analytical Chemistry, 65, 3127–3128.

    Article  CAS  Google Scholar 

  • Rodríguez-González, O., Walkling-Ribeiro, M., Jayaram, S., & Griffiths, M. W. (2011). Factors affecting the inactivation of the natural microbiota of milk processed by pulsed electric fields and cross-flow microfiltration. Journal of Dairy Research, 78, 270–278.

    Article  Google Scholar 

  • Russell, N. J., Evans, R. I., Ter Steeg, P. F., Hellemons, J., Verheul, A., & Abee, T. (1995). Membranes as a target for stress adaptation. International Journal of Food Microbiology, 28, 255–261.

    Article  CAS  Google Scholar 

  • Santos, N. C., & Castanho, A. R. B. (1996). Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus. Biophysical Journal, 71, 1641–1646.

    Article  CAS  Google Scholar 

  • Siciliano, R., Rega, B., Amoresano, A., & Pucci, P. (2000). Modern mass spectrometric methodologies in monitoring milk quality. Analytical Chemistry, 72, 408–415.

    Article  CAS  Google Scholar 

  • Sievers, R. E., & Hansen, B. (1991). Supercritical fluid nitrous oxide explosion. Chemical Engineering News, 69, 2.

    Article  CAS  Google Scholar 

  • Sikin, A. M., Walkling-Ribeiro, M., & Rizvi, S. S. H. (2016). Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control, 70, 174–182.

    Article  CAS  Google Scholar 

  • Sirisee, U., Hsieh, F., & Huff, H. E. (1998). Microbial safety of supercritical carbon dioxide processes. Journal of Food Processing and Preservation, 22, 387–403.

    Article  Google Scholar 

  • Spilimbergo, S. (2011). Milk pasteurization at low temperature under N2O pressure. Journal of Food Engineering, 105, 193–195.

    Article  CAS  Google Scholar 

  • Spilimbergo, S., & Ciola, L. (2010). Supercritical CO2 and N2O pasteurisation of peach and kiwi juice. International Journal of Food Science and Technology, 45, 1619–1625.

  • Spilimbergo, S., Elvassore, N., & Bertucco, A. (2002). Microbial inactivation by high-pressure. Journal of Supercritical Fluids, 22, 55–63.

    Article  CAS  Google Scholar 

  • Spilimbergo, S., Mantoan, D., & Cavazza, A. (2007a). Yeast inactivation in fresh apple juice by high pressure nitrous oxide. International Journal of Food Engineering, 3, 1–7.

    Article  Google Scholar 

  • Spilimbergo, S., Mantoan, D., & Dalser, A. (2007b). Supercritical gases pasteurization of apple juice. Journal of Supercritical Fluids, 40, 485–489.

    Article  CAS  Google Scholar 

  • Spilimbergo, S., Quaranta, A., Garcia-Gonzalez, L., Contrini, C., Cinquemani, C., & Van Ginneken, L. (2010). Intracellular pH measurement during high-pressure CO2 pasteurization evaluated by cell fluorescent staining. Journal Supercritical Fluids, 53, 185–191.

    Article  CAS  Google Scholar 

  • Tsuchido, T., Katsui, N., Takeuchi, A., Takano, M., & Shibasaki, I. (1985). Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Applied and Environmental Microbiology, 50, 298–303.

    CAS  Google Scholar 

  • Vo, H. T., Imai, T., Teeka, J., Sekine, M., Kanno, A., Van Le, T., et al. (2013). Comparison of disinfection effect of pressurized gases of CO2, N2O, and N2 on Escherichia coli. Water Research, 47, 4286–4293.

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2009). Antimicrobial effect and shelf-life extension by combined thermal and pulsed electric field treatment of milk. Journal of Applied Microbiology, 106, 241–248.

    Article  CAS  Google Scholar 

  • Weber, D. J., Sickbert-Bennett, E., Gergen, M. F., & Rutala, W. A. (2003). Efficacy of selected hand hygiene agents used to remove Bacillus atrophaeus (a surrogate of Bacillus anthracis) from contaminated hands. Journal of the American Medical Association, 289, 1274–1277.

    Article  CAS  Google Scholar 

  • Wordon, B. A., Mortimer, B., & McMaster, L. D. (2012). Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20 kHz) and heat for the application of hurdle technology. Food Research International, 47, 134–139.

    Article  Google Scholar 

  • Yoon, J. I., Bajpai, V. K., & Kang, S. C. (2011). Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food and Chemical Toxicology, 49, 109–114.

    Article  CAS  Google Scholar 

  • Yu, Y., Xu, Y., Wu, J., Xiao, G., Wen, J., Chen, Y., et al. (2014). Inactivation of Escherichia coli and Staphylococcus aureus in litchi juice by dimethyl dicarbonate (DMDC) combined with nisin. Journal of Food Research, 3, 1–9.

    Article  CAS  Google Scholar 

  • Yuk, H. G., & Geveke, D. J. (2011). Non-thermal inactivation and sub-lethal injury of Lactobacillus plantarum in apple cider by a pilot plant scale continuous supercritical carbon dioxide system. Food Microbiology, 28, 377–383.

    Article  Google Scholar 

  • Zhang, J., Davis, T. A., Matthews, M. A., Drews, M. J., LaBerge, M., & An, Y. H. (2006). Sterilization using high-pressure carbon dioxide. Journal of Supercritical Fluids, 38, 354–372.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the New York State Milk Promotion Advisory Board for their financial support of this study and Dr. Carmen Moraru for the Nanoparticle Size Analyzer and Minolta CM-2002 spectrophotometer equipment used in this study. Mr. Md. Sikin would like to acknowledge the financial support received for his doctoral studies from the Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Walkling-Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikin, A.M., Walkling-Ribeiro, M. & Rizvi, S.S.H. Synergistic Processing of Skim Milk with High Pressure Nitrous Oxide, Heat, Nisin, and Lysozyme to Inactivate Vegetative and Spore-Forming Bacteria. Food Bioprocess Technol 10, 2132–2145 (2017). https://doi.org/10.1007/s11947-017-1982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1982-4

Keywords

Navigation