Food and Bioprocess Technology

, Volume 10, Issue 11, pp 2069–2080 | Cite as

Effect of Addition of Native Agave Fructans on Spray-Dried Chayote (Sechium edule) and Pineapple (Ananas comosus) Juices: Rheology, Microstructure, and Water Sorption

  • Darvin E. Jimenez-Sánchez
  • Montserrat Calderón-Santoyo
  • Laetitia Picart-Palmade
  • Guadalupe Luna-Solano
  • Rosa I. Ortiz-Basurto
  • Pedro U. Bautista-Rosales
  • Juan A. Ragazzo-SánchezEmail author
Original Paper


The effect of the combination of maltodextrin DE 10 (MD) and native agave fructans (FR) in concentrations of 0, 2, and 4% (w/v) on the rheological properties, microstructure, and water sorption of spray-dried chayote and pineapple powders was evaluated. A 10% (w/v) maltodextrin treatment was used as a control to compare treatments added with fructans. The scanning electron micrographs revealed spherical particles in a range from 16 to 105 μm with shrinkage, whereby greater caking and agglomeration occurred among particles in treatments with native agave fructans. The flow behavior of all juices can be described by the Bingham model with low plastic viscosities (0.0026 to 0.0030 Pa s−1); the isotherms of the powders show a sigmoid shape pointing to the easy union of the fructans with water molecules. These types of isotherms are common for non-porous foods, and are indicative of physical adsorption in multi-layers where the adsorbate conserves its identity.


Fructans Spray-drying Isotherms Rheology Chayote Pineapple 



The authors thank CONACyT (Mexico) for their support in conducting the work throughout project number 210874 and for the scholarship granted to JIMENEZ-SANCHEZ D. E.


  1. Aguirre-Cruz, A., Alvarez-Castillo, A., Castrejón-Rosales, T., Carmona-García, R., & Bello-Pérez, L. A. (2010). Moisture adsorption behavior of banana flours (Musa paradisiaca) unmodified and modified by acid-treatment. Starch-Stärke, 62(12), 658–666.CrossRefGoogle Scholar
  2. Al-kahtani, H. A., & Hassan, B. H. (1990). Spray drying of roselle (Hibiscus sabdariffa L.) extract. Journal of Food Science, 55(4), 1073–1076.CrossRefGoogle Scholar
  3. Barbosa-Canovas, G., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: physical properties, processing and functionality. Nueva York: Kluwer Academic/Plenum Publisher New York.Google Scholar
  4. Barrosi, S. T., Mendes, E. S., & Peres, L. (2004). Influence of depectinization in the ultrafiltration of West Indian cherry (Malpighia glabra L.) and pineapple (Ananas Comosus (L.) Meer) juices. Food Science and Technology (Campinas), 24(2), 194–201.CrossRefGoogle Scholar
  5. Bello, G. J. (2000). Ciencia bromatológica—principios generales (1st ed., pp. 439). Madrid: Díaz de Santos S. A.Google Scholar
  6. Bhandari, B. R., Senoussi, A., Dumoulin, E. D., & Lebert, A. (1993). Spray drying of concentrated fruit juices. Drying Technology, 11(5), 1081–1092.CrossRefGoogle Scholar
  7. Bizot, H., Lebail, P., Leroux, B., Davy, J., Roger, P., & Buleon, A. (1997). Calorimetric evaluation of glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydrates Polymers, 32, 33–50.CrossRefGoogle Scholar
  8. Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On the theory of Vander Waals adsorption of gases. Journal of the American Chemical Society, 41, 1755–1760.Google Scholar
  9. Cal, K., & Sollohub, K. (2010). Spray drying technique. I: hardware and process parameters. Journal of Pharmaceutical Sciences, 99(2), 575–586.CrossRefGoogle Scholar
  10. Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314.CrossRefGoogle Scholar
  11. Caliskan, G., & Dirim, S. N. (2013). The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing, 91(4), 539–548.CrossRefGoogle Scholar
  12. Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(4), 420–428.CrossRefGoogle Scholar
  13. Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. Journal of Food Engineering, 111(1), 135–148.CrossRefGoogle Scholar
  14. Chen, C., & Lai, L. (2008). Mechanical and water vapor barrier properties of tapioca starch/ decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids, 22, 1584–1595.CrossRefGoogle Scholar
  15. Crispín-Isidro, G., Lobato-Calleros, C., Espinosa-Andrews, H., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2014). Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT-Food Science and Technology, 62(1), 438–444.Google Scholar
  16. Dalgıç, A. C., Pekmez, H., & Belibağlı, K. B. (2012). Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. Journal of Food Science and Technology, 49(4), 439–449.CrossRefGoogle Scholar
  17. De Barros Fernandes, R. V., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101, 524–532.CrossRefGoogle Scholar
  18. DibTaxi, M. C. A., Santos, A. B., Menezes, H. C., & Grosso, C. R. F. (2000). Efeito da temperatura de secado e da percentagem de encapsulante no rendimento del jugo de camu-camu (Mirciaria dubia). In Anais do XVII Congresso Brasileiro de Ciencia e Tecnologia de Alimentos, SBCTA, Fortaleza, pp. 6–113.Google Scholar
  19. Do, D. D. (1998). Adsoprtion analysis: equilibria and kinetics. London: Imperial College Press.Google Scholar
  20. Echavarría, A. P., Falguera, V., Torras, C., Berdún, C., Pagán, J., & Ibarz, A. (2012). Ultrafiltration and reverse osmosis for clarification and concentration of fruit juices at pilot plant scale. LWT-Food Science and Technology, 46(1), 189–195.CrossRefGoogle Scholar
  21. Espinosa-Andrews, H., & Urias-Silvas, J. E. (2012). Thermal properties of agave fructans (Agave Tequilana Weber var. Azul). Carbohydrate Polymers, 87, 2671–2676.CrossRefGoogle Scholar
  22. Fernandes, R. V. B., Borges, S. V., Botrel, D. A., Silva, E. K., Costa, J. M. G., & Queiroz, F. (2013a). Microencapsulation of rosemary essential oil: characterization of particles. Drying Technology, 31, 1245–1254.Google Scholar
  23. Fernandes, R. V. B., Borges, S. V., & Botrel, D. A. (2013b). Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciência e Tecnologia de Alimentos, 33, 171–178.CrossRefGoogle Scholar
  24. Fazaeli, M., Emam-Djomeh, Z., Ashtari, A. K., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675.CrossRefGoogle Scholar
  25. Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35.CrossRefGoogle Scholar
  26. Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82(2), 246–252.CrossRefGoogle Scholar
  27. Goula, A. M., & Adamapoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II—the effect on powder properties. Journal of Food Engineering, 66, 35–42.CrossRefGoogle Scholar
  28. Goula, A. M., & Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Drying Technology, 26(6), 726–737.CrossRefGoogle Scholar
  29. Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2008). Nutritional and rheological characterization of spray drying sweet potato powder. Food Science and Technology, 41, 206–216.Google Scholar
  30. Guggisberg, D., Cuthbert-Steven, J., Piccinali, P., Bütikofer, U., & Eberhard, P. (2009). Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. International Dairy Journal, 19, 107–115.CrossRefGoogle Scholar
  31. Harte, F., Clark, S., & Barbosa-Canovas, G. V. (2007). Yield stress for initial firmness determination on yogurt. Journal of Food Engineering, 80, 990–995.CrossRefGoogle Scholar
  32. Kilburn, D., Claude, J., Mezzenga, R., Dlubek, G., Alam, A., & Ubbink, J. (2004). Water in glassy carbohydrates: opening it up at the nanolevel. Journal of Physical and Chemistry B, 108, 12436–12441.CrossRefGoogle Scholar
  33. Kurozawa, L. E., Park, K. J., & Hubinger, M. D. (2009). Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. Journal of Food Engineering, 91(2), 287–296.CrossRefGoogle Scholar
  34. Labuza, T. P., Kaanane, A., & Chen, J. Y. (1985). Effect of temperatura on the moisture sorption isotherms and water activity shift of two dehydrated foods. Journal of Food Science, 50, 385–391.CrossRefGoogle Scholar
  35. Le Meste, M., Champion, D., Roudaut, G., Blond, G., & Simatos, D. (2002). Glass transition and food technology: a critical appraisal. Journal of Food Science, 67(7), 2444–2458.CrossRefGoogle Scholar
  36. Lomauro, C. J., Bakshi, A. S., & Labuza, T. P. (1985). Effect of temperatura on the moisture sorption isotherm equations. Part I: fruit, vegetable and meat products. Lebensmittel Wissenschaft und Technologie, 18, 111–117.Google Scholar
  37. Martínez, N. N. Grau, M. A., Chirlat, B., & Fito, P. (1998). Termodinámica y cinética de sistemas alimento entorno (1st ed. pp. 144–213). Universidad Politécnica de Valencia, España.Google Scholar
  38. Moreira, R., Chenlo, F., Torres, M. D., & Vallejo, N. (2008). Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88(4), 514–521.CrossRefGoogle Scholar
  39. Mosquera, L. H., Moraga, G., & Martinez Navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering, 97, 72–78.CrossRefGoogle Scholar
  40. Mujumdar, A. S. (1995). Handbook of industrial drying (pp. 263–309). New York: Ed. Marcel Dekker, Inc..Google Scholar
  41. Muzaffar, K., & Kumar, P. (2016). Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technology, 291, 322–327.CrossRefGoogle Scholar
  42. Nollet, L. M., & Toldrá, F. (Eds.). (2015). Handbook of food analysis, -two volume set. Boca Raton: CRC Press.Google Scholar
  43. Núñez-Santiago M. C., Méndez-Montealvo M. G. C., & Solorza-Feria J. (2001). Introducción a la Reología. México: Instituto Politécnico Nacional.Google Scholar
  44. Perdomo, J., Cova, A., Sandoval, A. J., García, L., Laredo, E., & Müller, A. J. (2009). Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, 76(2), 305–313.CrossRefGoogle Scholar
  45. Phisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the properties of product. International Food Research Journal, 19(4), 1297–1306.Google Scholar
  46. Ponce S. J. A., Macías B. E. R., Soltero M., J. F. A., Fernández E.  V. V, Zúñiga P. V. , & Escalona B. H. B. (2008). Physical-chemical and non-linear rheological properties of aqueous solutions of agave fructans. e-Gnosis, 6, 1–23.Google Scholar
  47. Quirijns, E. J., Van Boxtel, A. J. B., Van Loon, W. K. P., & Van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805–1814.CrossRefGoogle Scholar
  48. Rahman, M. S. (Ed.). (2009). Food properties handbook. Florida: CRC press. Inc.Google Scholar
  49. Roos, Y. H. (2010). Glass transition temperature and its relevance in food processing. Annual Review of Food Science and Technology, 1, 469–496.CrossRefGoogle Scholar
  50. Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1985). A scanning electron microscopy study of microencapsulation. Journal of Food Science, 50(1), 139–144.CrossRefGoogle Scholar
  51. Roussenova, M., Murith, M., Alam, A., & Ubbink, J. (2010). Plasticization, antiplasticization, and molecular packing in amorphus carbohydraye-glycerol matrices. Biomacromolecules, 11(12), 3237–3247.CrossRefGoogle Scholar
  52. Sablani, S. S., Shrestha, A. K., & Bhandari, B. R. (2008). A new method of producing date poder granules: physicochemical characteristics of powder. Journal of Food Engineering, 87(3), 416–421.CrossRefGoogle Scholar
  53. Shamsudin, R., Ling, C. S., Adzahan, N. M., & Daud, W. R. W. (2013). Rheological properties of ultraviolet-irradiated and thermally pasteurized Yankee pineapple juice. Journal of Food Engineering, 116(2), 548–553.CrossRefGoogle Scholar
  54. Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10(3), 661–673.CrossRefGoogle Scholar
  55. Silva, M. A., Sobral, P. J. A., & Kieckbusch, T. G. (2006). State diagrams of freeze-dried camu-camu (Myrcaria dubia (HBK) Mc Vaugh) pulp with and without maltodextrin addition. Journal of Food Engineering, 77(3), 426–432.CrossRefGoogle Scholar
  56. Slade, L., & Levine, H. (1991). Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30, 115–360.CrossRefGoogle Scholar
  57. Tan, S. P., Tuyen, C. K., Parks, S. E., Stathopoulos, C. E., & Roach, P. D. (2015). Effects of the spray-drying temperatures on the physicochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65–75.Google Scholar
  58. Tonon, R. V., Freitas, S. S., & Hubinger, M. D. (2011). Spray drying of açai (Euterpe oleraceae Mart.) juice: effect of inlet air temperature and type of carrier agent. Journal of Food Processing and Preservation, 35(5), 691–700.CrossRefGoogle Scholar
  59. Truong, V., Bhandari, B. R., & Howes, T. (2005). Optimization of co-current spray drying process of sugar-rich foods. Part I—moisture and glass transition temperature profile during drying. Journal of Food Engineering, 71(1), 55–65.CrossRefGoogle Scholar
  60. Tunc, S., & Duman, O. (2007). Thermodynamic properties andmoisture adsorption isotherms of cottonseed protein isolateand different forms of cottonseed samples. Journal. Food Engineering, 81, 133–143.CrossRefGoogle Scholar
  61. Valipour, M. (2016a). How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture, 6(4), 53.CrossRefGoogle Scholar
  62. Valipour, M. (2016b). Variations of land use and irrigation for next decades under different scenarios. Irriga, 1(01), 262–288.CrossRefGoogle Scholar
  63. Valipour, M., Sefidkouhi, M. A. G., & Raeini, M. (2017). Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180, 50–60.CrossRefGoogle Scholar
  64. Vega, G. A., Lara, A. E., & Lemus, M. R. (2006). Isotermas de adsorción de harina de maíz (Zea mays L). Ciencia y Tecnología de Alimentos, Campinas, 26, 821–827.CrossRefGoogle Scholar
  65. Vega-Gálvez, A. L. M. S., Lemus-Mondaca, R., Bilbao-Sáinz, C., Fito, P., & Andrés, A. (2008). Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). Journal of Food Engineering, 85(1), 42–50.CrossRefGoogle Scholar
  66. Vega-Gálvez, A., Miranda, M., Díaz, L. P., Lopez, L., Rodriguez, K., & Di Scala, K. (2010). Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresource Technology, 101(19), 7265–7270.CrossRefGoogle Scholar
  67. Yang, R.T. (1987). Gas Separation by Adsorption Processes. Stoneham: Butterworths Publishers.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Darvin E. Jimenez-Sánchez
    • 1
  • Montserrat Calderón-Santoyo
    • 1
  • Laetitia Picart-Palmade
    • 2
  • Guadalupe Luna-Solano
    • 3
  • Rosa I. Ortiz-Basurto
    • 1
  • Pedro U. Bautista-Rosales
    • 4
  • Juan A. Ragazzo-Sánchez
    • 1
    Email author
  1. 1.Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México / Instituto Tecnológico de TepicTepicMexico
  2. 2.UMR 1208, Ingénierie des Agropolymères et Technologies EmergentesUniversité de MontpellierMontpellierFrance
  3. 3.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México / Instituto Tecnológico de OrizabaOrizabaMexico
  4. 4.Centro de Tecnología de AlimentosUniversidad Autónoma de NayaritTepicMexico

Personalised recommendations