A New Label-Free Impedimetric Affinity Sensor Based on Cholinesterases for Detection of Organophosphorous and Carbamic Pesticides in Food Samples: Impedimetric Versus Amperometric Detection

Abstract

Due to their increasing use in agriculture, the presence of pesticide residues in food and water currently represents one of the major issues for the food safety. Among the pesticides, organophosphate and carbamate species are the most used, and their toxicity is mainly due to their inhibitory effect on acetylcholinesterase (AChE). For this reason, a monoenzymatic acetylcholinesterase impedimetric biosensor was developed in order to sensitively detect carbamate and organophosphate compounds with a very fast response. The working principle of the AChE biosensor exploits the capability of carbamate and organophosphate pesticides to form a stable complex with the enzyme, which causes an impedimetric change. The impedimetric biosensor showed a linearity between 5 and 170 ppb for carbamates and 2.5–170 ppb for organophosphate compounds, with a reproducibility (RSD%) interelectrode equal to 4.8 and 3.1% for organophosphates and carbamates, respectively. Moreover, the common amperometric evaluation of AChE inhibition degree was correlated to the impedimetric changes of the electrode surface, showing a good correlation (R 2 = 0.99 for carbamates and R 2 = 0.98 for organophosphates) between the two methods. In contrast to amperometric evaluation that needs a response time of 20 min, impedimetric detection requires only 4 min. Finally, the impedimetric biosensor was used to measure carbaryl and dichlorvos spiked in different concentrations in tap water and lettuce samples, showing a recovery near to 100% for all concentrations and for both pesticides.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albanese, D., Di Matteo, M., & Pilloton, R. (2012). Quantitative screening and resolution of carbamic and organoposphate pesticides mixture in extra virgin olive oil by acetylcholinesterase-choline oxidase sensor. J Environ Sci Eng A, 1, 68–77.

    CAS  Google Scholar 

  2. Andreescu, S., & Marty, J. L. (2006). Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomolecular Engineering, 23, 1–15.

    CAS  Article  Google Scholar 

  3. Andreescu, S., Avramescu, A., Bala, C., Magear, V., & Marty, J. L. (2002). Detection of organophosphorus insecticides with immobilized acetylcholinesterase—comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry, 374, 39–45.

    CAS  Article  Google Scholar 

  4. Arduini, F., Ricci, F., Tuta, C. S., Moscone, D., Amine, A., & Palleschi, G. (2006). Detection of carbamic and organophosphorus pesticides in water samples using cholinesterase biosensor based on Prussian Blue modified screen printed electrode. Analytica Chimica Acta, 580, 155–162.

    CAS  Article  Google Scholar 

  5. Arduini, F., Guidone, S., Amine, A., Palleschi, G., & Moscone, D. (2013). Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors and Actuators B: Chemical, 179, 201–208.

    CAS  Article  Google Scholar 

  6. Bahadir, E. B., & Sezginturk, M. K. (2016). A review on impedimetric biosensors. Artif Cells Nanomedicine Biotechnol, 44(1), 248–262.

    CAS  Article  Google Scholar 

  7. Caetano, J., & Machado, A. S. (2008). Determination of carbaryl in tomato “in natura” using an amperometric biosensor based on the inhibition of acetylcholinesterase activity. Sensors and Actuators B, 129, 40–46.

    CAS  Article  Google Scholar 

  8. Chauhan, N., & Pundir, C. S. (2011). An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Analytica Chimica Acta, 701, 66–74.

    CAS  Article  Google Scholar 

  9. Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Current Neuropharmacology, 11, 315–335.

    CAS  Article  Google Scholar 

  10. Darvesh, S., Darvesh, K. V., McDonald, R. S., Mataija, D., Walash, R., Mothana, S., Lockridge, O., & Martin, E. (2008). Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. Journal of Medicinal Chemistry, 51, 4200–4212.

    CAS  Article  Google Scholar 

  11. Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245–254.

    CAS  Article  Google Scholar 

  12. Guan, J. G., Miao, Y. Q., & Zhang, Q. J. (2004). Impedimetric biosensors. Journal of Bioscience and Bioengineering, 97(4), 219–226.

    CAS  Article  Google Scholar 

  13. Krstić, D. Z., Colovic, M., Kralj, M. B., Franko, M., Krinulovic, K., Trebse, P., & Vasic, V. (2008). Inhibition of AChE by malathion and some structurally similar compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 23, 562–573.

    Article  Google Scholar 

  14. Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 78, 835–843.

    CAS  Article  Google Scholar 

  15. Malvano, F., ese, D., Pilloton, R., & Di Matteo, M. (2016). A highly sensitive impedimetric label free immunosensor for ochratoxin measurement in cocoa beans. Food Chemistry, 212, 688–694.

    CAS  Article  Google Scholar 

  16. Mehta, J., Vinayak, P., Tuteja, S. K., Chhabra, V. A., Bhardwaj, N., Paul, A. K., Kim, K. H., & Deep, A. (2016). Biosensors and Bioelectronics, 83, 339–346.

    CAS  Article  Google Scholar 

  17. Moscone, D., Volpe, G., Arduini, F., & Micheli, L. (2016). Rapid electrochemical screening methods for food safety and quality. Acta Imeko, 5, 45–50.

    Article  Google Scholar 

  18. Sanllorente-Méndez, S., Domínguez-Renedo, O., & Arcos-Martínez, J. (2010). Immobilization of acetylcholinesterase on screen-printed electrodes. Application to the determination of arsenic(III). Sensors, 10, 2119–2128.

    Article  Google Scholar 

  19. Sassolas, A., Prieto-Simon, B., & Marty, J. L. (2012). Biosensors for pesticide detection: new trends. American Journal of Analytical Chemistry, 3, 210–232.

    CAS  Article  Google Scholar 

  20. Storm, J. E., Rozman, K. K., & Doull, J. (2000). Occupational exposure limits for 30 organophosphate pesticides based on inhibition of red blood cell acetylcholinesterase. Toxicology, 150, 1–29.

    CAS  Article  Google Scholar 

  21. Vakurov, A., Simpson, C. E., Daly, C. L., Gibson, T. D., & Millner, P. A. (2004). Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection: I. Modification of carbon surface for immobilization of acetylcholinesterase. Biosensors and Bioelectronics, 20(6), 1118–1125.

  22. Valdes -Ramirez, G., Cortina, M., Ramirez Silva, M. T., & Marty, J. L. (2008). Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Analytical and Bioanalytical Chemistry, 392, 699–707.

    CAS  Article  Google Scholar 

  23. Xavier, M. P., Vallejo, B., Marazuela, M. D., Moreno-Bondi, M. C., Baldini, F., & Falai, A. (2000). Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red. Biosensors and Bioelectronics, 14, 895–905.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donatella Albanese.

Electronic supplementary material

ESM 1

(DOCX 1107 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malvano, F., Albanese, D., Pilloton, R. et al. A New Label-Free Impedimetric Affinity Sensor Based on Cholinesterases for Detection of Organophosphorous and Carbamic Pesticides in Food Samples: Impedimetric Versus Amperometric Detection. Food Bioprocess Technol 10, 1834–1843 (2017). https://doi.org/10.1007/s11947-017-1955-7

Download citation

Keywords

  • Pesticides
  • Electrochemical impedance spectroscopy
  • Affinity biosensors
  • Acetylcholinesterase