Skip to main content

Essential Oils for Food Application: Natural Substances with Established Biological Activities

Abstract

Essential oils (EOs) are natural products obtained from aromatic plants. Steam distillation and hydrodistillation are the most commonly used methods for the extraction of EOs at laboratory scale. They have been widely studied due to their potential in the food industry. EO can be used in food in order to prolong the shelf-life, and additionally, they can reduce or replace synthetics additives. Their effectiveness can be confirmed in antimicrobial and antioxidant tests performed, in general, by diffusion test in agar and DPPH assay, respectively. Volatile compounds are present in EOs, a role in their biological activities. In this line of thought, chromatography techniques can be applied to identify the main volatile compounds present in EOs. In general, EOs extend food stability during storage, inhibiting the growth of spoilage or pathogenic microorganisms and protecting against oxidation. It is important to evaluate the responsible compounds for the biological activities of EOs and determine their utilization limits, including their safety. Highly variable composition with source species, plant parts, and/or extraction methods appears to play important roles in the variability of EO biological activities. This review provides a concise and critical insight in the use of EOs with emphasis in food applications.

This is a preview of subscription content, access via your institution.

References

  • Aburjai, T., & Natsheh, F. M. (2003). Plants used in cosmetics. Phytotherapy Research, 17, 987–1000. doi:10.1002/ptr.1363.

    Article  Google Scholar 

  • Adrar, N., Oukil, N., & Bedjou, F. (2016). Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Industrial Crops and Products, 88, 112–119. doi:10.1016/j.indcrop.2015.12.007.

    CAS  Article  Google Scholar 

  • Aguilar-González, A. E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 32, 181–185. doi:10.1016/j.ifset.2015.09.003.

    Article  CAS  Google Scholar 

  • Aidi Wannes, W., Mhamdi, B., Sriti, J., Ben Jemia, M., Ouchikh, O., Hamdaoui, G., et al. (2010). Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food and Chemical Toxicology, 48(5), 1362–1370. doi:10.1016/j.fct.2010.03.002.

    CAS  Article  Google Scholar 

  • Al Abbasy, D. W., Pathare, N., Al-Sabahi, J. N., & Khan, S. A. (2015). Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.) Asian Pacific Journal of Tropical Disease, 5(8), 645–649. doi:10.1016/S2222-1808(15)60905-7.

    Article  CAS  Google Scholar 

  • Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: a systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8), 601–611. doi:10.1016/j.apjtb.2015.05.007.

    Article  Google Scholar 

  • Amorati, R., Foti, M. C., & Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835–10847. doi:10.1021/jf403496k.

    CAS  Article  Google Scholar 

  • André, C., Castanheira, I., Cruz, J. M., Paseiro, P., & Sanches-Silva, A. (2010). Analytical strategies to evaluate antioxidants in food: a review. Trends in Food Science & Technology, 21(5), 229–246. doi:10.1016/j.tifs.2009.12.003.

    Article  CAS  Google Scholar 

  • Ansorena, M. R., Zubeldía, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT-Food Science and Technology, 69, 47–54. doi:10.1016/j.lwt.2016.01.020.

    CAS  Article  Google Scholar 

  • Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73(2), 239–244. doi:10.1016/S0308-8146(00)00324-1.

    CAS  Article  Google Scholar 

  • AOCS - O fficial methods and recommended practices of the American Oil Chemists’ Society (4th ed.). (1994). Standard Method Cd 12b-92. Champaign: AOCS Press.

  • Asdadi, A., Hamdouch, A., Oukacha, A., Moutaj, R., Gharby, S., Harhar, H., et al. (2015). Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. Journal de Mycologie Médicale/Journal of Medical Mycology, 25(4), e118–e127. doi:10.1016/j.mycmed.2015.10.005.

    CAS  Article  Google Scholar 

  • Asif, M., Yehya, A. H. S., Al-Mansoub, M. A., Revadigar, V., Ezzat, M. O., Khadeer Ahamed, M. B., et al. (2016). Anticancer attributes of Illicium verum essential oils against colon cancer. South African Journal of Botany, 103, 156–161. doi:10.1016/j.sajb.2015.08.017.

    CAS  Article  Google Scholar 

  • Atrea, I., Papavergou, A., Amvrosiadis, I., & Savvaidis, I. N. (2009). Combined effect of vacuum-packaging and oregano essential oil on the shelf-life of Mediterranean octopus (Octopus vulgaris) from the Aegean Sea stored at 4 °C. Food Microbiology, 26(2), 166–172. doi:10.1016/j.fm.2008.10.005.

    CAS  Article  Google Scholar 

  • Audrain, H., Kenward, C., Lovell, C. R., Green, C., Ormerod, A. D., Sansom, J., et al. (2014). Allergy to oxidized limonene and linalool is frequent in the U.K. British Journal of Dermatology, 171(2), 292–297. doi:10.1111/bjd.13037.

    CAS  Article  Google Scholar 

  • Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1–2), 66–72. doi:10.1016/j.ijfoodmicro.2011.10.017.

    CAS  Article  Google Scholar 

  • Azeredo, G. A., Stamford, T. L. M., Nunes, P. C., Gomes Neto, N. J., de Oliveira, M. E. G., & de Souza, E. L. (2011). Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Research International, 44(5), 1541–1548. doi:10.1016/j.foodres.2011.04.012.

  • Azevedo, A. N., Buarque, P. R., Cruz, E. M. O., Blank, A. F., Alves, P. B., Nunes, M. L., & Santana, L. C. L. D. A. (2014). Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control, 43, 1–9. doi:10.1016/j.foodcont.2014.02.033.

    CAS  Article  Google Scholar 

  • Bastos, M. S. R., Da Silva Laurentino, L., Canuto, K. M., Mendes, L. G., Martins, C. M., Silva, S. M. F., et al. (2016). Physical and mechanical testing of essential oil-embedded cellulose ester films. Polymer Testing, 49, 156–161. doi:10.1016/j.polymertesting.2015.11.006.

    CAS  Article  Google Scholar 

  • Ben Ghnaya, A., Amri, I., Hanana, M., Gargouri, S., Jamoussi, B., Romane, A., & Hamrouni, L. (2016). Tetraclinis articulata (Vahl.) masters essential oil from Tunisia: chemical characterization and herbicidal and antifungal activities assessment. Industrial Crops and Products, 83, 113–117. doi:10.1016/j.indcrop.2015.12.026.

    CAS  Article  Google Scholar 

  • Bendahou, M., Muselli, A., Grignon-Dubois, M., Benyoucef, M., Desjobert, J.-M., Bernardini, A.-F., & Costa, J. (2008). Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: comparison with hydrodistillation. Food Chemistry, 106(1), 132–139. doi:10.1016/j.foodchem.2007.05.050.

    CAS  Article  Google Scholar 

  • Bentayeb, K., Vera, P., Rubio, C., & Nerín, C. (2014). The additive properties of oxygen radical absorbance capacity (ORAC) assay: the case of essential oils. Food Chemistry, 148, 204–208. doi:10.1016/j.foodchem.2013.10.037.

    CAS  Article  Google Scholar 

  • Bernaert, N., De Paepe, D., Bouten, C., De Clercq, H., Stewart, D., Van Bockstaele, E., et al. (2012). Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum). Food Chemistry, 134(2), 669–677. doi:10.1016/j.foodchem.2012.02.159.

    CAS  Article  Google Scholar 

  • Bleasel, N., Tate, B., & Rademaker, M. (2002). Allergic contact dermatitis following exposure to essential oils. Australasian Journal of Dermatology, 43(3), 211–213. doi:10.1046/j.1440-0960.2002.00598.x.

    Article  Google Scholar 

  • Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPHFree radical method. LWT - Food Science and Technology, 30(6), 609–615. doi:10.1006/fstl.1997.0240.

    CAS  Article  Google Scholar 

  • Botre, D. A., de Soares, N. F. F., Espitia, P. J. P., de Sousa, S., & Renhe, I. R. T. (2010). Avaliação de filme incorporado com óleo essencial de orégano para conservação de pizza pronta. Revista Ceres, 57(3), 283–291. doi:10.1590/S0034-737X2010000300001.

    CAS  Article  Google Scholar 

  • Bouaziz, M., Yangui, T., Sayadi, S., & Dhouib, A. (2009). Disinfectant properties of essential oils from Salvia officinalis L. cultivated in Tunisia. Food and Chemical Toxicology, 47(11), 2755–2760. doi:10.1016/j.fct.2009.08.005.

    CAS  Article  Google Scholar 

  • Boulanouar, B., Abdelaziz, G., Aazza, S., Gago, C., & Miguel, M. G. (2013). Antioxidant activities of eight Algerian plant extracts and two essential oils. Industrial Crops and Products, 46, 85–96. doi:10.1016/j.indcrop.2013.01.020.

    CAS  Article  Google Scholar 

  • Bozin, B., Mimica-Dukic, N., Simin, N., & Anackov, G. (2006). Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry, 54(5), 1822–1828. doi:10.1021/jf051922u.

    CAS  Article  Google Scholar 

  • Brahmi, F., Abdenour, A., Bruno, M., Silvia, P., Alessandra, P., Danilo, F., et al. (2016). Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria. Industrial Crops and Products, 88, 96–105. doi:10.1016/j.indcrop.2016.03.002.

    CAS  Article  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. doi:10.1016/S0023-6438(95)80008-5.

    CAS  Article  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. doi:10.1016/j.ijfoodmicro.2004.03.022.

    CAS  Article  Google Scholar 

  • Cacho, J. I., Campillo, N., Viñas, P., & Hernández-Córdoba, M. (2016). Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography. Food Chemistry, 200, 249–254. doi:10.1016/j.foodchem.2016.01.026.

    CAS  Article  Google Scholar 

  • Calogirou, A., Larsen, B. R., & Kotzias, D. (1999). Gas-phase terpene oxidation products: a review. Atmospheric Environment, 33(9), 1423–1439. doi:10.1016/S1352-2310(98)00277-5.

    CAS  Article  Google Scholar 

  • Centers for Disease Control and Prevention. (2015). Food Safety. http://www.cdc.gov/foodsafety/cdc-and-food-safety.html. Accessed 10 July 2016.

  • Chanwitheesuk, A., Teerawutgulrag, A., & Rakariyatham, N. (2005). Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chemistry, 92(3), 491–497. doi:10.1016/j.foodchem.2004.07.035.

    CAS  Article  Google Scholar 

  • Choi, H.-S., Song, H. S., Ukeda, H., & Sawamura, M. (2000). Radical-scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2-picrylhydrazyl. Journal of Agricultural and Food Chemistry, 48(9), 4156–4161. doi:10.1021/jf000227d.

    CAS  Article  Google Scholar 

  • Choi, W. S., Singh, S., & Lee, Y. S. (2016). Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of “Formosa” plum (Prunus salicina L.) LWT-Food Science and Technology, 70, 213–222. doi:10.1016/j.lwt.2016.02.036.

    CAS  Article  Google Scholar 

  • Cooke, M., Poole, C. F., Wilson, I. D., & Adlard, E. R. (Eds.). (2000). Encyclopedia of separation science. Academic Press.

  • Dahham, S. S., Tabana, Y. M., Ahmed Hassan, L. E., Khadeer Ahamed, M. B., Abdul Majid, A. S., & Abdul Majid, A. M. S. (2016). In vitro antimetastatic activity of agarwood (Aquilaria crassna) essential oils against pancreatic cancer cells. Alexandria Journal of Medicine, 52(2), 141–150. doi:10.1016/j.ajme.2015.07.001.

    Article  Google Scholar 

  • Dhouioui, M., Boulila, A., Chaabane, H., Zina, M. S., & Casabianca, H. (2016). Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Industrial Crops and Products, 83, 301–306. doi:10.1016/j.indcrop.2016.01.025.

    CAS  Article  Google Scholar 

  • Diaz, P., Jeong, S. C., Lee, S., Khoo, C., & Koyyalamudi, S. R. (2012). Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Chinese Medicine, 7(1), 26. doi:10.1186/1749-8546-7-26.

    Article  Google Scholar 

  • Dimić, G., Kocić-Tanackov, S., Mojović, L., & Pejin, J. (2014). Antifungal activity of lemon essential oil, coriander and cinnamon extracts on foodborne molds in direct contact and the vapor phase. Journal of Food Processing and Preservation, 39(6), 1778–1787. doi:10.1111/jfpp.12410.

    Article  CAS  Google Scholar 

  • Djabou, N., Lorenzi, V., Guinoiseau, E., Andreani, S., Giuliani, M. C., Desjobert, J. M., et al. (2013). Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control, 30(1), 354–363. doi:10.1016/j.foodcont.2012.06.025.

    CAS  Article  Google Scholar 

  • Duarte, A., Luís, Â., Oleastro, M., & Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control, 61, 115–122. doi:10.1016/j.foodcont.2015.09.033.

    CAS  Article  Google Scholar 

  • Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest: comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP. Journal of Agricultural and Food Chemistry, 57, 1768–1774. doi:10.1021/jf803011r.

    Article  CAS  Google Scholar 

  • Dvaranauskaité, A., Venskutonis, P. R., Raynaud, C., Talou, T., Viškelis, P., & Sasnauskas, A. (2009). Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chemistry, 114(2), 671–679. doi:10.1016/j.foodchem.2008.10.005.

    Article  CAS  Google Scholar 

  • Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21(4), 308–323. doi:10.1002/ptr.2072.

    CAS  Article  Google Scholar 

  • Elzaawely, A., Xuan, T., Koyama, H., & Tawata, S. (2007). Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & amp; R.M. Sm. Food Chemistry, 104(4), 1648–1653. doi:10.1016/j.foodchem.2007.03.016.

    CAS  Article  Google Scholar 

  • Emiroğlu, Z. K., Yemiş, G. P., Coşkun, B. K., & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283–288. doi:10.1016/j.meatsci.2010.04.016.

    Article  CAS  Google Scholar 

  • Espitia, P. J. P., de Soares, N. F. F., Botti, L. C. M., de Melo, N. R., Pereira, O. L., & da Silva, W. A. (2012). Assessment of the efficiency of essential oils in the preservation of postharvest papaya in an antimicrobial packaging system. Brazilian Journal of Food Technology, 15(4), 333–342. doi:10.1590/S1981-67232012005000027.

    Article  CAS  Google Scholar 

  • European Commission. (2008). Regulation (EC) no. 1334/2008. Official Journal of the European Union, L 354/34(1334), 34–50 http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008R1334.

    Google Scholar 

  • Fernández-Pan, I., Carrión-Granda, X., & Maté, J. I. (2014). Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control, 36(1), 69–75. doi:10.1016/j.foodcont.2013.07.032.

    Article  CAS  Google Scholar 

  • Ferrari, C. K. b. (1998). Oxidação lipídica em alimentos e sistemas biológicos: mecanismos gerais e implicações nutricionais e patólogicas. Revista de Nutrição, 11(1), 3–14. doi:10.1590/S1415-52731998000100001.

    CAS  Article  Google Scholar 

  • Fisher, K., & Phillips, C. A. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacterjejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology, 101(6), 1232–1240. doi:10.1111/j.1365-2672.2006.03035.x.

    CAS  Article  Google Scholar 

  • Food And Drug Administration (FDA). (2016). Code of Federal Regulations (CFR). Title 21: food and drugs. Chapter I—Food and Drug Administration, Department of Health and Human Services, subchapter B—food for human consumption (continued), part 182—substances generally recognized as safe (GRAS), subpart A—general provisions, subpart 182.20—essential oils, oleoresins, and natural extractives. Office of the Federal Register, Washington.

  • Frankel, E. N. (2005). Lipid oxidation. Oily press lipid library, 18(19), 1–22.

    Google Scholar 

  • Gaio, I., Saggiorato, A. G., Treichel, H., Cichoski, A. J., Astolfi, V., Cardoso, R. I., et al. (2015a). Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. Journal für Verbraucherschutz und Lebensmittelsicherheit, 10(4), 323–329. doi:10.1007/s00003-015-0936-x.

    CAS  Article  Google Scholar 

  • Gaio, I., Saggiorato, A. G., Treichel, H., Cichoski, A. J., Astolfi, V., Cardoso, R. I., et al. (2015b). Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. Journal fur Verbraucherschutz und Lebensmittelsicherheit, 10(4), 323–329. doi:10.1007/s00003-015-0936-x.

    CAS  Article  Google Scholar 

  • García-Moreno, P. J., Pérez-Gálvez, R., Guadix, A., & Guadix, E. M. (2013). Influence of the parameters of the Rancimat test on the determination of the oxidative stability index of cod liver oil. LWT-Food Science and Technology, 51(1), 303–308. doi:10.1016/j.lwt.2012.11.002.

    Article  CAS  Google Scholar 

  • Ghods, A. A., Abforosh, N. H., Ghorbani, R., & Asgari, M. R. (2015). The effect of topical application of lavender essential oil on the intensity of pain caused by the insertion of dialysis needles in hemodialysis patients: a randomized clinical trial. Complementary Therapies in Medicine, 23(3), 325–330. doi:10.1016/j.ctim.2015.03.001.

    Article  Google Scholar 

  • Gniewosz, M., Kraśniewska, K., Woreta, M., & Kosakowska, O. (2013). Antimicrobial activity of a pullulan-caraway essential oil coating on reduction of food microorganisms and quality in fresh baby carrot. Journal of Food Science, 78(8), M1242–M1248. doi:10.1111/1750-3841.12217.

    CAS  Article  Google Scholar 

  • Gomes Neto, N. J., da Luz, I. S., Tavares, A. G., Honório, V. G., Magnani, M., & de Souza, E. L. (2012). Rosmarinus officinalis L. essential oil and its majority compound 1,8-cineole at sublethal amounts induce no direct and cross protection in Staphylococcus aureus ATCC 6538. Foodborne Pathogens and Disease, 9(12), 1071–1076. doi:10.1089/fpd.2012.1258.

    CAS  Article  Google Scholar 

  • Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889–896. doi:10.1016/j.fm.2010.05.012.

    Article  CAS  Google Scholar 

  • Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R., & Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116(4), 982–989. doi:10.1016/j.foodchem.2009.03.058.

    Article  CAS  Google Scholar 

  • Groot, A. C., & Schmidt, E. (2016). Essential oils. Part IV. Dermatitis, 27(4), 170–175. doi:10.1097/DER.0000000000000197.

    Article  CAS  Google Scholar 

  • Gutiérrez, J. B. (2000). Ciencia bromatológica: principios generales de los alimentos. Ediciones Díaz de Santos.

  • Haiyan, G., Lijuan, H., Shaoyu, L., Chen, Z., & Ashraf, M. A. (2016). Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi Journal of Biological Sciences, 23(4), 524–530. doi:10.1016/j.sjbs.2016.02.020.

    CAS  Article  Google Scholar 

  • Handa, S. S., Khanuja, S. P. S., Longo, G., & Rakesh, D. D. (Eds.). (2008). Extraction technologies for medicinal and aromatic plants. Trieste: ICS-UNIDO. doi:10.1021/np800144q.

    Google Scholar 

  • Harkat-Madouri, L., Asma, B., Madani, K., Bey-Ould Si Said, Z., Rigou, P., Grenier, D., et al. (2015). Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Industrial Crops and Products, 78, 148–153. doi:10.1016/j.indcrop.2015.10.015.

    CAS  Article  Google Scholar 

  • Hill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51(1), 86–93. doi:10.1016/j.lwt.2012.11.011.

    CAS  Article  Google Scholar 

  • Hossain, M. B., Brunton, N. P., Barry-Ryan, C., Martin-Diana, A., & Wilkinson, M. (2008). Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan Journal of Chemistry, 1(4), 751–756.

  • Hossain, M. A., Shah, M. D., Sang, S. V., & Sakari, M. (2012). Chemical composition and antibacterial properties of the essential oils and crude extracts of Merremia borneensis. Journal of King Saud University-Science, 24(3), 243–249. doi:10.1016/j.jksus.2011.03.006.

    Article  Google Scholar 

  • Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, 194, 1266–1274. doi:10.1016/j.foodchem.2015.09.004.

    CAS  Article  Google Scholar 

  • Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995. doi:10.1016/j.foodchem.2007.12.010.

    CAS  Article  Google Scholar 

  • Hyun, J. E., Bae, Y. M., Yoon, J. H., & Lee, S. Y. (2015). Preservative effectiveness of essential oils in vapor phase combined with modified atmosphere packaging against spoilage bacteria on fresh cabbage. Food Control, 51, 307–313. doi:10.1016/j.foodcont.2014.11.030.

    CAS  Article  Google Scholar 

  • Imelouane, B., Amhamdi, H., Wathelet, J. P., Ankit, M., Khedid, K., Bachiri, E., & a. (2009). Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco. International Journal of Agriculture & Biology, 11(5), 205–208 http://www.partochemi.com/userfiles/uploads/GC-MS_Thymus_vulgaris_2012_01.pdf.

    CAS  Google Scholar 

  • Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., & Sotomayor, J. A. (2013). Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control, 30(2), 463–468. doi:10.1016/j.foodcont.2012.07.029.

    Article  CAS  Google Scholar 

  • Jrah Harzallah, H., Kouidhi, B., Flamini, G., Bakhrouf, A., & Mahjoub, T. (2011). Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chemistry, 129(4), 1469–1474. doi:10.1016/j.foodchem.2011.05.117.

    CAS  Article  Google Scholar 

  • Kelen, M., & Tepe, B. (2008). Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresource Technology, 99(10), 4096–4104. doi:10.1016/j.biortech.2007.09.002.

    CAS  Article  Google Scholar 

  • Khajeh, M., Yamini, Y., Bahramifar, N., Sefidkon, F., & Reza Pirmoradei, M. (2005). Comparison of essential oils compositions of Ferula assa-foetida obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chemistry, 91(4), 639–644. doi:10.1016/j.foodchem.2004.06.033.

    CAS  Article  Google Scholar 

  • Kpadonou Kpoviessi, B. G. H., Kpoviessi, S. D. S., Yayi Ladekan, E., Gbaguidi, F., Frédérich, M., Moudachirou, M., et al. (2014). In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. Journal of Ethnopharmacology, 155(3), 1417–1423. doi:10.1016/j.jep.2014.07.014.

    CAS  Article  Google Scholar 

  • Kykkidou, S., Giatrakou, V., Papavergou, A., Kontominas, M. G., & Savvaidis, I. N. (2009). Effect of thyme essential oil and packaging treatments on fresh Mediterranean swordfish fillets during storage at 4 °C. Food Chemistry, 115(1), 169–175. doi:10.1016/j.foodchem.2008.11.083.

    CAS  Article  Google Scholar 

  • Li, Y., Fabiano-Tixier, A.-S., & Chemat, F. (2014). Essential oils as reagents in green chemistry, 9–21. doi:10.1007/978-3-319-08449-7.

  • Llana-Ruíz-Cabello, M., Pichardo, S., Jiménez-Morillo, N. T., Bermúdez, J. M., Aucejo, S., González-Vila, F. J., et al. (2015). Molecular characterization of a bio-based active packaging containing Origanum vulgare L. essential oil using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Journal of the Science of Food and Agriculture, n/a-n/a. doi:10.1002/jsfa.7502.

  • Longaray Delamare, A. P., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chemistry, 100(2), 603–608. doi:10.1016/j.foodchem.2005.09.078.

    CAS  Article  Google Scholar 

  • Luís, Â., Duarte, A., Gominho, J., Domingues, F., & Duarte, A. P. (2016). Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products, 79, 274–282. doi:10.1016/j.indcrop.2015.10.055.

    Article  CAS  Google Scholar 

  • Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057–3064. doi:10.1016/j.foodres.2011.07.030.

    CAS  Article  Google Scholar 

  • Lv, J., Huang, H., Yu, L., Whent, M., Niu, Y., Shi, H., et al. (2012). Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chemistry, 132(3), 1442–1450. doi:10.1016/j.foodchem.2011.11.135.

    CAS  Article  Google Scholar 

  • Magalhães, L. M., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1–19. doi:10.1016/j.aca.2008.02.047.

    Article  CAS  Google Scholar 

  • Mahboubi, M., & Haghi, G. (2008). Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. Journal of Ethnopharmacology, 119(2), 325–327. doi:10.1016/j.jep.2008.07.023.

    CAS  Article  Google Scholar 

  • Majouli, K., Besbes Hlila, M., Hamdi, A., Flamini, G., Ben Jannet, H., & Kenani, A. (2016). Antioxidant activity and α-glucosidase inhibition by essential oils from Hertia cheirifolia (L.) Industrial Crops and Products, 82, 23–28. doi:10.1016/j.indcrop.2015.12.015.

    CAS  Article  Google Scholar 

  • Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. doi:10.1016/j.jcs.2016.11.004.

    Article  CAS  Google Scholar 

  • Márquez-Ruiz, G., García-Martínez, M. C., & Holgado, F. (2008). Changes and effects of dietary oxidized lipids in the gastrointestinal tract. Lipid Insights. Libertas Academica. doi:10.4137/LPI.S904.

  • Martucci, J. F., Gende, L. B., Neira, L. M., & Ruseckaite, R. A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products, 71, 205–213. doi:10.1016/j.indcrop.2015.03.079.

    CAS  Article  Google Scholar 

  • McClements, D. J., & Decker, E. A. (2000). Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8), 1270–1282. doi:10.1111/j.1365-2621.2000.tb10596.x.

    CAS  Article  Google Scholar 

  • de Melo, A. A. M., Geraldine, R. M., Silveira, M. F. A., Torres, M. C. L., Rezende, C. S. M. E., Fernandes, T. H., & de Oliveira, A. N. (2012). Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil. Brazilian Journal of Microbiology, 43(4), 1419–1427. doi:10.1590/S1517-83822012000400025.

  • Moghaddam, M., & Farhadi, N. (2015). Influence of environmental and genetic factors on resin yield, essential oil content and chemical composition of Ferula assa-foetida L. populations. Journal of Applied Research on Medicinal and Aromatic Plants, 2(3), 69–76. doi:10.1016/j.jarmap.2015.04.001.

    Article  Google Scholar 

  • Morelli, C. L., Mahrous, M., Belgacem, M. N., Branciforti, M. C., Bretas, R. E. S., & Bras, J. (2015). Natural copaiba oil as antibacterial agent for bio-based active packaging. Industrial Crops and Products, 70, 134–141. doi:10.1016/j.indcrop.2015.03.036.

    CAS  Article  Google Scholar 

  • Mostafa, D. M., Kassem, A. A., Asfour, M. H., Al Okbi, S. Y., Mohamed, D. A., & Hamed, T. E. S. (2015). Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: in vitro and in vivo evaluation. Journal of Molecular Liquids, 212, 6–15. doi:10.1016/j.molliq.2015.08.047.

    CAS  Article  Google Scholar 

  • Moure, A., Franco, D., Sineiro, J., Dominguez, H., Núñez, M. J., & Lema, J. M. (2001). Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Research International, 34(2–3), 103–109. doi:10.1016/S0963-9969(00)00136-8.

    CAS  Article  Google Scholar 

  • Muhammad, N., Barkatullah, Ibrar, M., Khan, H., Saeed, M., Khan, A. Z., & Kaleem, W. A. (2013). In vivo screening of essential oils of Skimmia laureola leaves for antinociceptive and antipyretic activity. Asian Pacific Journal of Tropical Biomedicine, 3(3), 202–206. doi:10.1016/S2221-1691(13)60050-7.

    Article  Google Scholar 

  • Muriel-Galet, V., Cran, M. J., Bigger, S. W., Hernández-Muñoz, P., & Gavara, R. (2015). Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. Journal of Food Engineering, 149, 9–16. doi:10.1016/j.jfoodeng.2014.10.007.

    CAS  Article  Google Scholar 

  • Naik, M. I., Fomda, B. A., Jaykumar, E., & Bhat, J. A. (2010). Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacteria. Asian Pacific Journal of Tropical Medicine, 3(7), 535–538. doi:10.1016/S1995-7645(10)60129-0.

    Article  Google Scholar 

  • Nakatsu, T., Lupo, A. T., Chinn, J. W., & Kang, R. K. L. (2000). Biological activity of essential oils and their constituents (part B). In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Vol. 21, pp. 571–631). Amsterdam: Elsevier B.V.

    Google Scholar 

  • Negi, P. S. (2012). Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156(1), 7–17. doi:10.1016/j.ijfoodmicro.2012.03.006.

    Article  Google Scholar 

  • Nikolic, M., Glamoclija, J., Ferreira, I. C. F. R., Calhelha, R. C., Fernandes, Â., Markovic, T., et al. (2014). Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 52, 183–190. doi:10.1016/j.indcrop.2013.10.006.

    CAS  Article  Google Scholar 

  • Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K. M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81(4), 485–493. doi:10.1016/S0308-8146(02)00476-4.

    CAS  Article  Google Scholar 

  • Ocaña-Fuentes, A., Arranz-Gutiérrez, E., Señorans, F. J., & Reglero, G. (2010). Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food and Chemical Toxicology, 48(6), 1568–1575. doi:10.1016/j.fct.2010.03.026.

    Article  CAS  Google Scholar 

  • Ojeda-Sana, A. M., van Baren, C. M., Elechosa, M. A., Juárez, M. A., & Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31(1), 189–195. doi:10.1016/j.foodcont.2012.09.022.

    CAS  Article  Google Scholar 

  • Olagnier, D., Costes, P., Berry, A., Linas, M.-D., Urrutigoity, M., Dechy-Cabaretb, O., & Benoit-Vical, F. (2007). Modifications of the chemical structure of terpenes in antiplasmodial and antifungal drug research. Bioorganic & Medicinal Chemistry Letters, 17(22), 6075–6078. doi:10.1016/j.bmcl.2007.09.056.

    CAS  Article  Google Scholar 

  • Ooi, L. S. M., Li, Y., Kam, S.-L., Wang, H., Wong, E. Y. L., & Ooi, V. E. C. (2006). Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. The American Journal of Chinese Medicine, 34(3), 511–522. doi:10.1142/S0192415X06004041.

    CAS  Article  Google Scholar 

  • Organização Mundial de Saúde, O. (2015). Food safety. Fact sheet N°399. http://www.who.int/mediacentre/factsheets/fs399/en/. Accessed 24 August 2016.

  • Otero, V., Becerril, R., Santos, J. A., Rodríguez-Calleja, J. M., Nerín, C., & García-López, M. L. (2014). Evaluation of two antimicrobial packaging films against Escherichia coli O157: H7 strains invitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control, 42, 296–302. doi:10.1016/j.foodcont.2014.02.022.

    CAS  Article  Google Scholar 

  • Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52(18), 5598–5605. doi:10.1021/jf049389q.

    CAS  Article  Google Scholar 

  • Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2007). Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. Journal of Food Protection, 70(4), 901–908 http://www.ncbi.nlm.nih.gov/pubmed/17477259.

    CAS  Article  Google Scholar 

  • Patras, A., Yuan, Y. V., Costa, H. S., & Sanches-Silva, A. (2013). Antioxidant activity of phytochemicals. In B. K. Tiwari, N. P. Brunton, & C. S. Brennan (Eds.), Handbook of plant phytochemicals: sources, stability and extraction (pp. 452–472). Hoboken: John Wiley & Sons, Ltd..

  • Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, 76, 174–187. doi:10.1016/j.indcrop.2015.06.050.

    CAS  Article  Google Scholar 

  • Pavela, R., Žabka, M., Bednář, J., Tříska, J., & Vrchotová, N. (2016). New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Industrial Crops and Products, 83, 275–282. doi:10.1016/j.indcrop.2015.11.090.

    CAS  Article  Google Scholar 

  • Pei, R. S., Zhou, F., Ji, B. P., & Xu, J. (2009). Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. Journal of Food Science, 74(7), 379–383. doi:10.1111/j.1750-3841.2009.01287.x.

    Article  CAS  Google Scholar 

  • Perdones, A., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979–986. doi:10.1016/j.foodchem.2015.11.054.

    CAS  Article  Google Scholar 

  • Periasamy, V. S., Athinarayanan, J., & Alshatwi, A. A. (2016). Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 31, 449–455. doi:10.1016/j.ultsonch.2016.01.035.

    CAS  Article  Google Scholar 

  • Petretto, G. L., Fancello, F., Zara, S., Foddai, M., Mangia, N. P., Sanna, M. L., et al. (2014). Antimicrobial activity against beneficial microorganisms and chemical composition of essential oil of Mentha suaveolens ssp. insularis grown in Sardinia. Journal of Food Science, 79(3), M369–M377. doi:10.1111/1750-3841.12343.

    CAS  Article  Google Scholar 

  • Pilar Santamarina, M., Roselló, J., Giménez, S., & Amparo Blázquez, M. (2016). Commercial Laurus nobilis L. and Syzygium aromaticum L. Merr. & Perry essential oils against post-harvest phytopathogenic fungi on rice. LWT-Food Science and Technology, 65, 325–332. doi:10.1016/j.lwt.2015.08.040.

    CAS  Article  Google Scholar 

  • Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30(1), 224–231. doi:10.1016/j.foodhyd.2012.05.019.

    CAS  Article  Google Scholar 

  • Pokorny, J., Yanishlieva, N., & Gordon, M. H. (Eds.). (2001). Antioxidants in food: practical applications. CRC Press.

  • Ponce, A. G., Fritz, R., Del Valle, C. & Roura, S. I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT- Food Science and Technology, 36, 679–68. doi:10.1016/S0023-6438(03)00088-4.

  • Ponce, A. G., Del Valle, C. E. & Roura, S. I. (2004). Natural essential oils as reducing agents of peroxidase activity in leafy vegetables. LWT- Food Science and Technology, 37, 199–204. doi:10.1016/j.lwt.2003.07.005.

  • Porres-Martínez, M., González-Burgos, E., Accame, M. E. C., & Gómez-Serranillos, M. P. (2013). Phytochemical composition, antioxidant and cytoprotective activities of essential oil of Salvia lavandulifolia Vahl. Food Research International, 54(1), 523–531. doi:10.1016/j.foodres.2013.07.029.

    Article  CAS  Google Scholar 

  • Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6, 39. doi:10.1186/1472-6882-6-39.

    Article  CAS  Google Scholar 

  • Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201–208. doi:10.1016/j.foodres.2012.08.020.

    CAS  Article  Google Scholar 

  • Proestos, C., Sereli, D., & Komaitis, M. (2006). Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chemistry, 95(1), 44–52. doi:10.1016/j.foodchem.2004.12.016.

    CAS  Article  Google Scholar 

  • Raeisi, M., Tajik, H., Aliakbarlu, J., Mirhosseini, S. H., & Hosseini, S. M. H. (2015). Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Science and Technology, 64(2), 898–904. doi:10.1016/j.lwt.2015.06.010.

    CAS  Article  Google Scholar 

  • Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264. doi:10.1016/j.indcrop.2014.05.055.

    CAS  Article  Google Scholar 

  • Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M., Yoshinari, T., Rezaee, M.-B., Jaimand, K., Nagasawa, H., & Sakuda, S. (2008). Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. International Journal of Food Microbiology, 123(3), 228–233. doi:10.1016/j.ijfoodmicro.2008.02.003.

    CAS  Article  Google Scholar 

  • Riahi, L., Chograni, H., Elferchichi, M., Zaouali, Y., Zoghlami, N., & Mliki, A. (2013). Variations in Tunisian wormwood essential oil profiles and phenolic contents between leaves and flowers and their effects on antioxidant activities. Industrial Crops and Products, 46, 290–296. doi:10.1016/j.indcrop.2013.01.036.

    CAS  Article  Google Scholar 

  • Ribeiro-Santos, R., Carvalho-Costa, D., Cavaleiro, C., Costa, H. S., Albuquerque, T. G., Castilho, M. C., et al. (2015). A novel insight on an ancient aromatic plant: the rosemary (Rosmarinus officinalis L.) Trends in Food Science and Technology, 45(2), 355–368. doi:10.1016/j.tifs.2015.07.015.

    CAS  Article  Google Scholar 

  • Ribeiro-Santos, R., Andrade, M., de Melo, N. R., dos Santos, F. R., de Neves, I. A., de Carvalho, M. G., & Sanches-Silva, A. (2017). Biological activities and major components determination in essential oils intended for a biodegradable food packaging. Industrial Crops and Products, 97, 201–210. doi:10.1016/j.indcrop.2016.12.006.

    CAS  Article  Google Scholar 

  • Romano, C. S., Abadi, K., Repetto, V., Vojnov, A. A., & Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 115(2), 456–461. doi:10.1016/j.foodchem.2008.12.029.

    CAS  Article  Google Scholar 

  • Ross, Z. M., Gara, E. A. O., Hill, D. J., & Sleightholme, H. V. (2001). Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria : Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder, 67(1), 475–480. doi:10.1128/AEM.67.1.475.

  • Rozman, T., & Jersek, B. (2009). Antimicrobial activity of rosemary extracts (Rosmarinus officinalis L.) against different species of Listeria. Acta agriculturae Slovenica, 93(1), 51–58. doi:10.2478/v10014-009-0007-z.

    Article  Google Scholar 

  • Rufino, M. S.., Alve, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006). Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Embrapa-Comunicado Técnico, 125.

  • Rufino, M. S.., Alve, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS●+. Comunicado Técnico, 128.

  • Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74–84. doi:10.1016/j.foodhyd.2013.02.008.

    CAS  Article  Google Scholar 

  • Sanches-Silva, A., Rodríguez-Bernaldo de Quirós, A., López-Hernández, J., & Paseiro-Losada, P. (2004). Determination of hexanal as indicator of the lipidic oxidation state in potato crisps using gas chromatography and high-performance liquid chromatography. Journal of Chromatography A, 1046(1–2), 75–81. doi:10.1016/j.chroma.2004.06.101.

    CAS  Article  Google Scholar 

  • Sánchez Aldana, D., Andrade-Ochoa, S., Aguilar, C. N., Contreras-Esquivel, J. C., & Nevárez-Moorillón, G. V. (2015). Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil. Food Control, 50, 907–912. doi:10.1016/j.foodcont.2014.10.044.

    Article  CAS  Google Scholar 

  • Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277–283. doi:10.1016/j.carbpol.2010.04.047.

    Article  CAS  Google Scholar 

  • Santos, T. G., Dognini, J., Begnini, I. M., Rebelo, R. A., Verdi, M., de Gasper, A. L., & Dalmarco, E. M. (2013). Chemical characterization of essential oils from Drimys angustifoliaMiers (Winteraceae) and antibacterial activity of their major compounds. Journal of the Brazilian Chemical Society, 24(1), 164–170. doi:10.1590/S0103-50532013000100020.

    CAS  Article  Google Scholar 

  • Schaller, M., & Korting, H. C. (1995). Allergie airborne contact dermatitis from essential oils used in aromatherapy. Clinical and Experimental Dermatology, 20(2), 143–145. doi:10.1111/j.1365-2230.1995.tb02719.x.

    CAS  Article  Google Scholar 

  • Šegvić Klarić, M., Kosalec, I., Mastelić, J., Piecková, E., & Pepeljnak, S. (2007). Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Letters in Applied Microbiology, 44(1), 36–42. doi:10.1111/j.1472-765X.2006.02032.x.

    Article  CAS  Google Scholar 

  • Shahwar, D., Raza, M. A., Bukhari, S., & Bukhari, G. (2012). Ferric reducing antioxidant power of essential oils extracted from Eucalyptus and Curcuma species. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1633–S1636. doi:10.1016/S2221-1691(12)60467-5.

    Article  Google Scholar 

  • Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749–7759. doi:10.1021/jf051513y.

    CAS  Article  Google Scholar 

  • Silvestre, W. P., Agostini, F., Muniz, L. A. R., & Pauletti, G. F. (2016). Fractionating of green mandarin (Citrus deliciosa Tenore) essential oil by vacuum fractional distillation. Journal of Food Engineering, 178, 90–94. doi:10.1016/j.jfoodeng.2016.01.011.

    CAS  Article  Google Scholar 

  • Singh, G., Maurya, S., DeLampasona, M. P., & Catalan, C. A. N. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9), 1650–1661. doi:10.1016/j.fct.2007.02.031.

    CAS  Article  Google Scholar 

  • Skandamis, P. N., & Nychas, G.-J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79(1–2), 35–45. doi:10.1016/S0168-1605(02)00177-0.

    CAS  Article  Google Scholar 

  • Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Science and Technology, 54(2), 346–352. doi:10.1016/j.lwt.2013.06.017.

    CAS  Article  Google Scholar 

  • Stojkovic, D., Glamoclija, J., Ciric, A., Nikolic, M., Ristic, M., Siljegovic, J., & Sokovic, M. (2013). Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Archives of Biological Sciences, 65(2), 639–643. doi:10.2298/ABS1302639S.

    Article  Google Scholar 

  • Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4 °C. LWT-Food Science and Technology, 53(2), 499–506. doi:10.1016/j.lwt.2013.02.024.

    CAS  Article  Google Scholar 

  • Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., et al. (2012). European pennyroyal (Mentha pulegium) from Portugal: chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Industrial Crops and Products, 36(1), 81–87. doi:10.1016/j.indcrop.2011.08.011.

    CAS  Article  Google Scholar 

  • Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43(1), 587–595. doi:10.1016/j.indcrop.2012.07.069.

    CAS  Article  Google Scholar 

  • Tian, F., Decker, E. A., & Goddard, J. M. (2013). Controlling lipid oxidation via a biomimetic iron chelating active packaging material. Journal of Agricultural and Food Chemistry, 61(50), 12397–12404. doi:10.1021/jf4041832.

    CAS  Article  Google Scholar 

  • Tisserand, R., & Young, R. (2014). Essential oil safety—a guide for health care professionals (Second edi ed.). Churchill Livingstone: Elsevier http://arxiv.org/abs/1011.1669.

    Google Scholar 

  • Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2013). Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. Journal of Food Engineering, 117(3), 350–360. doi:10.1016/j.jfoodeng.2013.03.005.

    CAS  Article  Google Scholar 

  • Trattner, A., David, M., & Lazarov, A. (2008). Occupational contact dermatitis due to essential oils. Contact Dermatitis, 58(5), 282–284. doi:10.1111/j.1600-0536.2007.01275.x.

    CAS  Article  Google Scholar 

  • Tung, Y.-T., Chua, M.-T., Wang, S.-Y., & Chang, S.-T. (2008). Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology, 99(9), 3908–3913. doi:10.1016/j.biortech.2007.07.050.

    CAS  Article  Google Scholar 

  • Ud-Daula, A. F. M. S., Demirci, F., Abu Salim, K., Demirci, B., Lim, L. B. L., Baser, K. H. C., & Ahmad, N. (2016). Chemical composition, antioxidant and antimicrobial activities of essential oils from leaves, aerial stems, basal stems, and rhizomes of Etlingera fimbriobracteata (K. Schum.) R.M.Sm. Industrial Crops and Products, 84, 189–198. doi:10.1016/j.indcrop.2015.12.034.

    CAS  Article  Google Scholar 

  • Unlu, M., Ergene, E., Unlu, G. V., Zeytinoglu, H. S., & Vural, N. (2010). Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and Chemical Toxicology, 48(11), 3274–3280. doi:10.1016/j.fct.2010.09.001.

    CAS  Article  Google Scholar 

  • Uter, W., Schmidt, E., Geier, J., Lessmann, H., Schnuch, A., & Frosch, P. (2010). Contact allergy to essential oils: current patch test results (2000–2008) from the Information Network of Departments of Dermatology (IVDK)*. Contact Dermatitis, 63(5), 277–283. doi:10.1111/j.1600-0536.2010.01768.x.

    Article  Google Scholar 

  • Velasco, J., Dobarganes, C., Holgado, F., & Márquez-Ruiz, G. (2009). A follow-up oxidation study in dried micro encapsulated oils under the accelerated conditions of the Rancimat test. Food Research International, 42(1), 56–62. doi:10.1016/j.foodres.2008.08.012.

    CAS  Article  Google Scholar 

  • Velluti, A., Sanchis, V., Ramos, A. J., Egido, J., & Marín, S. (2003). Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. International Journal of Food Microbiology, 89(2–3), 145–154. doi:10.1016/S0168-1605(03)00116-8.

    CAS  Article  Google Scholar 

  • Viteri Jumbo, L. O., Faroni, L. R. A., Oliveira, E. E., Pimentel, M. A., & Silva, G. N. (2014). Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Industrial Crops and Products, 56, 27–34. doi:10.1016/j.indcrop.2014.02.038.

    CAS  Article  Google Scholar 

  • Viuda-Martos, M., Ruiz Navajas, Y., Sánchez Zapata, E., Fernández-López, J., & Pérez-Álvarez, J. A. (2010). Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour and Fragrance Journal, 25(1), 13–19. doi:10.1002/ffj.1951.

    CAS  Article  Google Scholar 

  • Viuda-Martos, M., Mohamady, M. A., Fernández-López, J., Abd ElRazik, K. A., Omer, E. A., Pérez-Alvarez, J. A., & Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22(11), 1715–1722. doi:10.1016/j.foodcont.2011.04.003.

    CAS  Article  Google Scholar 

  • Volpe, M. G., Siano, F., Paolucci, M., Sacco, A., Sorrentino, A., Malinconico, M., & Varricchio, E. (2015). Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchus mykiss) fillets. LWT-Food Science and Technology, 60(1), 615–622. doi:10.1016/j.lwt.2014.08.048.

    CAS  Article  Google Scholar 

  • Wang, W., Wu, N., Zu, Y. G., & Fu, Y. J. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, 108(3), 1019–1022. doi:10.1016/j.foodchem.2007.11.046.

    CAS  Article  Google Scholar 

  • Wei, S.-D., Chen, H., Yan, T., Lin, Y.-M., & Zhou, H.-C. (2014). Identification of antioxidant components and fatty acid profiles of the leaves and fruits from Averrhoa carambola. LWT-Food Science and Technology, 55(1), 278–285. doi:10.1016/j.lwt.2013.08.013.

    CAS  Article  Google Scholar 

  • Ye, C.-L., Dai, D.-H., & Hu, W.-L. (2013). Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.) Food Control, 30(1), 48–53. doi:10.1016/j.foodcont.2012.07.033.

    CAS  Article  Google Scholar 

  • Yen, H. F., Hsieh, C. T., Hsieh, T. J., Chang, F. R., & Wang, C. K. (2015). In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. Journal of Food and Drug Analysis, 23(1), 124–129. doi:10.1016/j.jfda.2014.02.004.

    CAS  Article  Google Scholar 

  • Zeng, Q., Zhao, J., Wang, J., Zhang, X., & Jiang, J. (2016). Comparative extraction processes, volatile compounds analysis and antioxidant activities of essential oils from Cirsium japonicum Fisch. ex DC and Cirsium setosum (Willd.) M. Bieb. LWT-Food Science and Technology, 68, 595–605. doi:10.1016/j.lwt.2016.01.017.

    CAS  Article  Google Scholar 

  • Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 82(3), 338–345. doi:10.1016/j.meatsci.2009.02.004.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the research project “Development of an Edible Film Based on Whey Protein with Antioxidant and Antimicrobial Activity Using Essential Oils” (2012DAN807) funded by the National Institute of Health Dr. Ricardo Jorge, I.P. (Lisbon, Portugal). Regiane Ribeiro dos Santos (BEX 8754/14-4) is grateful for her research grant funded by Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) and Department of Food Technology, Institute of Technology, Rural Federal University of Rio de Janeiro, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathália Ramos de Melo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro-Santos, R., Andrade, M., Sanches-Silva, A. et al. Essential Oils for Food Application: Natural Substances with Established Biological Activities. Food Bioprocess Technol 11, 43–71 (2018). https://doi.org/10.1007/s11947-017-1948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1948-6

Keywords

  • Additives
  • Volatile compounds
  • DPPH
  • Gas chromatography
  • Analytical methods