Aburjai, T., & Natsheh, F. M. (2003). Plants used in cosmetics. Phytotherapy Research, 17, 987–1000. doi:10.1002/ptr.1363.
Article
Google Scholar
Adrar, N., Oukil, N., & Bedjou, F. (2016). Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Industrial Crops and Products, 88, 112–119. doi:10.1016/j.indcrop.2015.12.007.
CAS
Article
Google Scholar
Aguilar-González, A. E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 32, 181–185. doi:10.1016/j.ifset.2015.09.003.
Article
CAS
Google Scholar
Aidi Wannes, W., Mhamdi, B., Sriti, J., Ben Jemia, M., Ouchikh, O., Hamdaoui, G., et al. (2010). Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food and Chemical Toxicology, 48(5), 1362–1370. doi:10.1016/j.fct.2010.03.002.
CAS
Article
Google Scholar
Al Abbasy, D. W., Pathare, N., Al-Sabahi, J. N., & Khan, S. A. (2015). Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimum basilicum Linn.) Asian Pacific Journal of Tropical Disease, 5(8), 645–649. doi:10.1016/S2222-1808(15)60905-7.
Article
CAS
Google Scholar
Ali, B., Al-Wabel, N. A., Shams, S., Ahamad, A., Khan, S. A., & Anwar, F. (2015). Essential oils used in aromatherapy: a systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8), 601–611. doi:10.1016/j.apjtb.2015.05.007.
Article
Google Scholar
Amorati, R., Foti, M. C., & Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835–10847. doi:10.1021/jf403496k.
CAS
Article
Google Scholar
André, C., Castanheira, I., Cruz, J. M., Paseiro, P., & Sanches-Silva, A. (2010). Analytical strategies to evaluate antioxidants in food: a review. Trends in Food Science & Technology, 21(5), 229–246. doi:10.1016/j.tifs.2009.12.003.
Article
CAS
Google Scholar
Ansorena, M. R., Zubeldía, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT-Food Science and Technology, 69, 47–54. doi:10.1016/j.lwt.2016.01.020.
CAS
Article
Google Scholar
Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73(2), 239–244. doi:10.1016/S0308-8146(00)00324-1.
CAS
Article
Google Scholar
AOCS - O
fficial methods and recommended practices of the American Oil Chemists’ Society (4th ed.). (1994). Standard Method Cd 12b-92. Champaign: AOCS Press.
Asdadi, A., Hamdouch, A., Oukacha, A., Moutaj, R., Gharby, S., Harhar, H., et al. (2015). Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. Journal de Mycologie Médicale/Journal of Medical Mycology, 25(4), e118–e127. doi:10.1016/j.mycmed.2015.10.005.
CAS
Article
Google Scholar
Asif, M., Yehya, A. H. S., Al-Mansoub, M. A., Revadigar, V., Ezzat, M. O., Khadeer Ahamed, M. B., et al. (2016). Anticancer attributes of Illicium verum essential oils against colon cancer. South African Journal of Botany, 103, 156–161. doi:10.1016/j.sajb.2015.08.017.
CAS
Article
Google Scholar
Atrea, I., Papavergou, A., Amvrosiadis, I., & Savvaidis, I. N. (2009). Combined effect of vacuum-packaging and oregano essential oil on the shelf-life of Mediterranean octopus (Octopus vulgaris) from the Aegean Sea stored at 4 °C. Food Microbiology, 26(2), 166–172. doi:10.1016/j.fm.2008.10.005.
CAS
Article
Google Scholar
Audrain, H., Kenward, C., Lovell, C. R., Green, C., Ormerod, A. D., Sansom, J., et al. (2014). Allergy to oxidized limonene and linalool is frequent in the U.K. British Journal of Dermatology, 171(2), 292–297. doi:10.1111/bjd.13037.
CAS
Article
Google Scholar
Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1–2), 66–72. doi:10.1016/j.ijfoodmicro.2011.10.017.
CAS
Article
Google Scholar
Azeredo, G. A., Stamford, T. L. M., Nunes, P. C., Gomes Neto, N. J., de Oliveira, M. E. G., & de Souza, E. L. (2011). Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Research International, 44(5), 1541–1548. doi:10.1016/j.foodres.2011.04.012.
Azevedo, A. N., Buarque, P. R., Cruz, E. M. O., Blank, A. F., Alves, P. B., Nunes, M. L., & Santana, L. C. L. D. A. (2014). Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control, 43, 1–9. doi:10.1016/j.foodcont.2014.02.033.
CAS
Article
Google Scholar
Bastos, M. S. R., Da Silva Laurentino, L., Canuto, K. M., Mendes, L. G., Martins, C. M., Silva, S. M. F., et al. (2016). Physical and mechanical testing of essential oil-embedded cellulose ester films. Polymer Testing, 49, 156–161. doi:10.1016/j.polymertesting.2015.11.006.
CAS
Article
Google Scholar
Ben Ghnaya, A., Amri, I., Hanana, M., Gargouri, S., Jamoussi, B., Romane, A., & Hamrouni, L. (2016). Tetraclinis articulata (Vahl.) masters essential oil from Tunisia: chemical characterization and herbicidal and antifungal activities assessment. Industrial Crops and Products, 83, 113–117. doi:10.1016/j.indcrop.2015.12.026.
CAS
Article
Google Scholar
Bendahou, M., Muselli, A., Grignon-Dubois, M., Benyoucef, M., Desjobert, J.-M., Bernardini, A.-F., & Costa, J. (2008). Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: comparison with hydrodistillation. Food Chemistry, 106(1), 132–139. doi:10.1016/j.foodchem.2007.05.050.
CAS
Article
Google Scholar
Bentayeb, K., Vera, P., Rubio, C., & Nerín, C. (2014). The additive properties of oxygen radical absorbance capacity (ORAC) assay: the case of essential oils. Food Chemistry, 148, 204–208. doi:10.1016/j.foodchem.2013.10.037.
CAS
Article
Google Scholar
Bernaert, N., De Paepe, D., Bouten, C., De Clercq, H., Stewart, D., Van Bockstaele, E., et al. (2012). Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum). Food Chemistry, 134(2), 669–677. doi:10.1016/j.foodchem.2012.02.159.
CAS
Article
Google Scholar
Bleasel, N., Tate, B., & Rademaker, M. (2002). Allergic contact dermatitis following exposure to essential oils. Australasian Journal of Dermatology, 43(3), 211–213. doi:10.1046/j.1440-0960.2002.00598.x.
Article
Google Scholar
Bondet, V., Brand-Williams, W., & Berset, C. (1997). Kinetics and mechanisms of antioxidant activity using the DPPHFree radical method. LWT - Food Science and Technology, 30(6), 609–615. doi:10.1006/fstl.1997.0240.
CAS
Article
Google Scholar
Botre, D. A., de Soares, N. F. F., Espitia, P. J. P., de Sousa, S., & Renhe, I. R. T. (2010). Avaliação de filme incorporado com óleo essencial de orégano para conservação de pizza pronta. Revista Ceres, 57(3), 283–291. doi:10.1590/S0034-737X2010000300001.
CAS
Article
Google Scholar
Bouaziz, M., Yangui, T., Sayadi, S., & Dhouib, A. (2009). Disinfectant properties of essential oils from Salvia officinalis L. cultivated in Tunisia. Food and Chemical Toxicology, 47(11), 2755–2760. doi:10.1016/j.fct.2009.08.005.
CAS
Article
Google Scholar
Boulanouar, B., Abdelaziz, G., Aazza, S., Gago, C., & Miguel, M. G. (2013). Antioxidant activities of eight Algerian plant extracts and two essential oils. Industrial Crops and Products, 46, 85–96. doi:10.1016/j.indcrop.2013.01.020.
CAS
Article
Google Scholar
Bozin, B., Mimica-Dukic, N., Simin, N., & Anackov, G. (2006). Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry, 54(5), 1822–1828. doi:10.1021/jf051922u.
CAS
Article
Google Scholar
Brahmi, F., Abdenour, A., Bruno, M., Silvia, P., Alessandra, P., Danilo, F., et al. (2016). Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria. Industrial Crops and Products, 88, 96–105. doi:10.1016/j.indcrop.2016.03.002.
CAS
Article
Google Scholar
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. doi:10.1016/S0023-6438(95)80008-5.
CAS
Article
Google Scholar
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. doi:10.1016/j.ijfoodmicro.2004.03.022.
CAS
Article
Google Scholar
Cacho, J. I., Campillo, N., Viñas, P., & Hernández-Córdoba, M. (2016). Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography. Food Chemistry, 200, 249–254. doi:10.1016/j.foodchem.2016.01.026.
CAS
Article
Google Scholar
Calogirou, A., Larsen, B. R., & Kotzias, D. (1999). Gas-phase terpene oxidation products: a review. Atmospheric Environment, 33(9), 1423–1439. doi:10.1016/S1352-2310(98)00277-5.
CAS
Article
Google Scholar
Centers for Disease Control and Prevention. (2015). Food Safety. http://www.cdc.gov/foodsafety/cdc-and-food-safety.html. Accessed 10 July 2016.
Chanwitheesuk, A., Teerawutgulrag, A., & Rakariyatham, N. (2005). Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chemistry, 92(3), 491–497. doi:10.1016/j.foodchem.2004.07.035.
CAS
Article
Google Scholar
Choi, H.-S., Song, H. S., Ukeda, H., & Sawamura, M. (2000). Radical-scavenging activities of citrus essential oils and their components: detection using 1,1-diphenyl-2-picrylhydrazyl. Journal of Agricultural and Food Chemistry, 48(9), 4156–4161. doi:10.1021/jf000227d.
CAS
Article
Google Scholar
Choi, W. S., Singh, S., & Lee, Y. S. (2016). Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of “Formosa” plum (Prunus salicina L.) LWT-Food Science and Technology, 70, 213–222. doi:10.1016/j.lwt.2016.02.036.
CAS
Article
Google Scholar
Cooke, M., Poole, C. F., Wilson, I. D., & Adlard, E. R. (Eds.). (2000). Encyclopedia of separation science. Academic Press.
Dahham, S. S., Tabana, Y. M., Ahmed Hassan, L. E., Khadeer Ahamed, M. B., Abdul Majid, A. S., & Abdul Majid, A. M. S. (2016). In vitro antimetastatic activity of agarwood (Aquilaria crassna) essential oils against pancreatic cancer cells. Alexandria Journal of Medicine, 52(2), 141–150. doi:10.1016/j.ajme.2015.07.001.
Article
Google Scholar
Dhouioui, M., Boulila, A., Chaabane, H., Zina, M. S., & Casabianca, H. (2016). Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Industrial Crops and Products, 83, 301–306. doi:10.1016/j.indcrop.2016.01.025.
CAS
Article
Google Scholar
Diaz, P., Jeong, S. C., Lee, S., Khoo, C., & Koyyalamudi, S. R. (2012). Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Chinese Medicine, 7(1), 26. doi:10.1186/1749-8546-7-26.
Article
Google Scholar
Dimić, G., Kocić-Tanackov, S., Mojović, L., & Pejin, J. (2014). Antifungal activity of lemon essential oil, coriander and cinnamon extracts on foodborne molds in direct contact and the vapor phase. Journal of Food Processing and Preservation, 39(6), 1778–1787. doi:10.1111/jfpp.12410.
Article
CAS
Google Scholar
Djabou, N., Lorenzi, V., Guinoiseau, E., Andreani, S., Giuliani, M. C., Desjobert, J. M., et al. (2013). Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control, 30(1), 354–363. doi:10.1016/j.foodcont.2012.06.025.
CAS
Article
Google Scholar
Duarte, A., Luís, Â., Oleastro, M., & Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control, 61, 115–122. doi:10.1016/j.foodcont.2015.09.033.
CAS
Article
Google Scholar
Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest: comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP. Journal of Agricultural and Food Chemistry, 57, 1768–1774. doi:10.1021/jf803011r.
Article
CAS
Google Scholar
Dvaranauskaité, A., Venskutonis, P. R., Raynaud, C., Talou, T., Viškelis, P., & Sasnauskas, A. (2009). Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chemistry, 114(2), 671–679. doi:10.1016/j.foodchem.2008.10.005.
Article
CAS
Google Scholar
Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research, 21(4), 308–323. doi:10.1002/ptr.2072.
CAS
Article
Google Scholar
Elzaawely, A., Xuan, T., Koyama, H., & Tawata, S. (2007). Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & amp; R.M. Sm. Food Chemistry, 104(4), 1648–1653. doi:10.1016/j.foodchem.2007.03.016.
CAS
Article
Google Scholar
Emiroğlu, Z. K., Yemiş, G. P., Coşkun, B. K., & Candoğan, K. (2010). Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Science, 86(2), 283–288. doi:10.1016/j.meatsci.2010.04.016.
Article
CAS
Google Scholar
Espitia, P. J. P., de Soares, N. F. F., Botti, L. C. M., de Melo, N. R., Pereira, O. L., & da Silva, W. A. (2012). Assessment of the efficiency of essential oils in the preservation of postharvest papaya in an antimicrobial packaging system. Brazilian Journal of Food Technology, 15(4), 333–342. doi:10.1590/S1981-67232012005000027.
Article
CAS
Google Scholar
European Commission. (2008). Regulation (EC) no. 1334/2008. Official Journal of the European Union, L 354/34(1334), 34–50 http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008R1334.
Google Scholar
Fernández-Pan, I., Carrión-Granda, X., & Maté, J. I. (2014). Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control, 36(1), 69–75. doi:10.1016/j.foodcont.2013.07.032.
Article
CAS
Google Scholar
Ferrari, C. K. b. (1998). Oxidação lipídica em alimentos e sistemas biológicos: mecanismos gerais e implicações nutricionais e patólogicas. Revista de Nutrição, 11(1), 3–14. doi:10.1590/S1415-52731998000100001.
CAS
Article
Google Scholar
Fisher, K., & Phillips, C. A. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacterjejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology, 101(6), 1232–1240. doi:10.1111/j.1365-2672.2006.03035.x.
CAS
Article
Google Scholar
Food And Drug Administration (FDA). (2016). Code of Federal Regulations (CFR). Title 21: food and drugs. Chapter I—Food and Drug Administration, Department of Health and Human Services, subchapter B—food for human consumption (continued), part 182—substances generally recognized as safe (GRAS), subpart A—general provisions, subpart 182.20—essential oils, oleoresins, and natural extractives. Office of the Federal Register, Washington.
Frankel, E. N. (2005). Lipid oxidation. Oily press lipid library, 18(19), 1–22.
Google Scholar
Gaio, I., Saggiorato, A. G., Treichel, H., Cichoski, A. J., Astolfi, V., Cardoso, R. I., et al. (2015a). Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. Journal für Verbraucherschutz und Lebensmittelsicherheit, 10(4), 323–329. doi:10.1007/s00003-015-0936-x.
CAS
Article
Google Scholar
Gaio, I., Saggiorato, A. G., Treichel, H., Cichoski, A. J., Astolfi, V., Cardoso, R. I., et al. (2015b). Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. Journal fur Verbraucherschutz und Lebensmittelsicherheit, 10(4), 323–329. doi:10.1007/s00003-015-0936-x.
CAS
Article
Google Scholar
García-Moreno, P. J., Pérez-Gálvez, R., Guadix, A., & Guadix, E. M. (2013). Influence of the parameters of the Rancimat test on the determination of the oxidative stability index of cod liver oil. LWT-Food Science and Technology, 51(1), 303–308. doi:10.1016/j.lwt.2012.11.002.
Article
CAS
Google Scholar
Ghods, A. A., Abforosh, N. H., Ghorbani, R., & Asgari, M. R. (2015). The effect of topical application of lavender essential oil on the intensity of pain caused by the insertion of dialysis needles in hemodialysis patients: a randomized clinical trial. Complementary Therapies in Medicine, 23(3), 325–330. doi:10.1016/j.ctim.2015.03.001.
Article
Google Scholar
Gniewosz, M., Kraśniewska, K., Woreta, M., & Kosakowska, O. (2013). Antimicrobial activity of a pullulan-caraway essential oil coating on reduction of food microorganisms and quality in fresh baby carrot. Journal of Food Science, 78(8), M1242–M1248. doi:10.1111/1750-3841.12217.
CAS
Article
Google Scholar
Gomes Neto, N. J., da Luz, I. S., Tavares, A. G., Honório, V. G., Magnani, M., & de Souza, E. L. (2012). Rosmarinus officinalis L. essential oil and its majority compound 1,8-cineole at sublethal amounts induce no direct and cross protection in Staphylococcus aureus ATCC 6538. Foodborne Pathogens and Disease, 9(12), 1071–1076. doi:10.1089/fpd.2012.1258.
CAS
Article
Google Scholar
Gómez-Estaca, J., López de Lacey, A., López-Caballero, M. E., Gómez-Guillén, M. C., & Montero, P. (2010). Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889–896. doi:10.1016/j.fm.2010.05.012.
Article
CAS
Google Scholar
Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R., & Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116(4), 982–989. doi:10.1016/j.foodchem.2009.03.058.
Article
CAS
Google Scholar
Groot, A. C., & Schmidt, E. (2016). Essential oils. Part IV. Dermatitis, 27(4), 170–175. doi:10.1097/DER.0000000000000197.
Article
CAS
Google Scholar
Gutiérrez, J. B. (2000). Ciencia bromatológica: principios generales de los alimentos. Ediciones Díaz de Santos.
Haiyan, G., Lijuan, H., Shaoyu, L., Chen, Z., & Ashraf, M. A. (2016). Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi Journal of Biological Sciences, 23(4), 524–530. doi:10.1016/j.sjbs.2016.02.020.
CAS
Article
Google Scholar
Handa, S. S., Khanuja, S. P. S., Longo, G., & Rakesh, D. D. (Eds.). (2008). Extraction technologies for medicinal and aromatic plants. Trieste: ICS-UNIDO. doi:10.1021/np800144q.
Google Scholar
Harkat-Madouri, L., Asma, B., Madani, K., Bey-Ould Si Said, Z., Rigou, P., Grenier, D., et al. (2015). Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Industrial Crops and Products, 78, 148–153. doi:10.1016/j.indcrop.2015.10.015.
CAS
Article
Google Scholar
Hill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51(1), 86–93. doi:10.1016/j.lwt.2012.11.011.
CAS
Article
Google Scholar
Hossain, M. B., Brunton, N. P., Barry-Ryan, C., Martin-Diana, A., & Wilkinson, M. (2008). Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan Journal of Chemistry, 1(4), 751–756.
Hossain, M. A., Shah, M. D., Sang, S. V., & Sakari, M. (2012). Chemical composition and antibacterial properties of the essential oils and crude extracts of Merremia borneensis. Journal of King Saud University-Science, 24(3), 243–249. doi:10.1016/j.jksus.2011.03.006.
Article
Google Scholar
Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, 194, 1266–1274. doi:10.1016/j.foodchem.2015.09.004.
CAS
Article
Google Scholar
Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995. doi:10.1016/j.foodchem.2007.12.010.
CAS
Article
Google Scholar
Hyun, J. E., Bae, Y. M., Yoon, J. H., & Lee, S. Y. (2015). Preservative effectiveness of essential oils in vapor phase combined with modified atmosphere packaging against spoilage bacteria on fresh cabbage. Food Control, 51, 307–313. doi:10.1016/j.foodcont.2014.11.030.
CAS
Article
Google Scholar
Imelouane, B., Amhamdi, H., Wathelet, J. P., Ankit, M., Khedid, K., Bachiri, E., & a. (2009). Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco. International Journal of Agriculture & Biology, 11(5), 205–208 http://www.partochemi.com/userfiles/uploads/GC-MS_Thymus_vulgaris_2012_01.pdf.
CAS
Google Scholar
Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., & Sotomayor, J. A. (2013). Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control, 30(2), 463–468. doi:10.1016/j.foodcont.2012.07.029.
Article
CAS
Google Scholar
Jrah Harzallah, H., Kouidhi, B., Flamini, G., Bakhrouf, A., & Mahjoub, T. (2011). Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chemistry, 129(4), 1469–1474. doi:10.1016/j.foodchem.2011.05.117.
CAS
Article
Google Scholar
Kelen, M., & Tepe, B. (2008). Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresource Technology, 99(10), 4096–4104. doi:10.1016/j.biortech.2007.09.002.
CAS
Article
Google Scholar
Khajeh, M., Yamini, Y., Bahramifar, N., Sefidkon, F., & Reza Pirmoradei, M. (2005). Comparison of essential oils compositions of Ferula assa-foetida obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chemistry, 91(4), 639–644. doi:10.1016/j.foodchem.2004.06.033.
CAS
Article
Google Scholar
Kpadonou Kpoviessi, B. G. H., Kpoviessi, S. D. S., Yayi Ladekan, E., Gbaguidi, F., Frédérich, M., Moudachirou, M., et al. (2014). In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. Journal of Ethnopharmacology, 155(3), 1417–1423. doi:10.1016/j.jep.2014.07.014.
CAS
Article
Google Scholar
Kykkidou, S., Giatrakou, V., Papavergou, A., Kontominas, M. G., & Savvaidis, I. N. (2009). Effect of thyme essential oil and packaging treatments on fresh Mediterranean swordfish fillets during storage at 4 °C. Food Chemistry, 115(1), 169–175. doi:10.1016/j.foodchem.2008.11.083.
CAS
Article
Google Scholar
Li, Y., Fabiano-Tixier, A.-S., & Chemat, F. (2014). Essential oils as reagents in green chemistry, 9–21. doi:10.1007/978-3-319-08449-7.
Llana-Ruíz-Cabello, M., Pichardo, S., Jiménez-Morillo, N. T., Bermúdez, J. M., Aucejo, S., González-Vila, F. J., et al. (2015). Molecular characterization of a bio-based active packaging containing Origanum vulgare L. essential oil using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Journal of the Science of Food and Agriculture, n/a-n/a. doi:10.1002/jsfa.7502.
Longaray Delamare, A. P., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chemistry, 100(2), 603–608. doi:10.1016/j.foodchem.2005.09.078.
CAS
Article
Google Scholar
Luís, Â., Duarte, A., Gominho, J., Domingues, F., & Duarte, A. P. (2016). Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Industrial Crops and Products, 79, 274–282. doi:10.1016/j.indcrop.2015.10.055.
Article
CAS
Google Scholar
Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057–3064. doi:10.1016/j.foodres.2011.07.030.
CAS
Article
Google Scholar
Lv, J., Huang, H., Yu, L., Whent, M., Niu, Y., Shi, H., et al. (2012). Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chemistry, 132(3), 1442–1450. doi:10.1016/j.foodchem.2011.11.135.
CAS
Article
Google Scholar
Magalhães, L. M., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1–19. doi:10.1016/j.aca.2008.02.047.
Article
CAS
Google Scholar
Mahboubi, M., & Haghi, G. (2008). Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. Journal of Ethnopharmacology, 119(2), 325–327. doi:10.1016/j.jep.2008.07.023.
CAS
Article
Google Scholar
Majouli, K., Besbes Hlila, M., Hamdi, A., Flamini, G., Ben Jannet, H., & Kenani, A. (2016). Antioxidant activity and α-glucosidase inhibition by essential oils from Hertia cheirifolia (L.) Industrial Crops and Products, 82, 23–28. doi:10.1016/j.indcrop.2015.12.015.
CAS
Article
Google Scholar
Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. doi:10.1016/j.jcs.2016.11.004.
Article
CAS
Google Scholar
Márquez-Ruiz, G., García-Martínez, M. C., & Holgado, F. (2008). Changes and effects of dietary oxidized lipids in the gastrointestinal tract. Lipid Insights. Libertas Academica. doi:10.4137/LPI.S904.
Martucci, J. F., Gende, L. B., Neira, L. M., & Ruseckaite, R. A. (2015). Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products, 71, 205–213. doi:10.1016/j.indcrop.2015.03.079.
CAS
Article
Google Scholar
McClements, D. J., & Decker, E. A. (2000). Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science, 65(8), 1270–1282. doi:10.1111/j.1365-2621.2000.tb10596.x.
CAS
Article
Google Scholar
de Melo, A. A. M., Geraldine, R. M., Silveira, M. F. A., Torres, M. C. L., Rezende, C. S. M. E., Fernandes, T. H., & de Oliveira, A. N. (2012). Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil. Brazilian Journal of Microbiology, 43(4), 1419–1427. doi:10.1590/S1517-83822012000400025.
Moghaddam, M., & Farhadi, N. (2015). Influence of environmental and genetic factors on resin yield, essential oil content and chemical composition of Ferula assa-foetida L. populations. Journal of Applied Research on Medicinal and Aromatic Plants, 2(3), 69–76. doi:10.1016/j.jarmap.2015.04.001.
Article
Google Scholar
Morelli, C. L., Mahrous, M., Belgacem, M. N., Branciforti, M. C., Bretas, R. E. S., & Bras, J. (2015). Natural copaiba oil as antibacterial agent for bio-based active packaging. Industrial Crops and Products, 70, 134–141. doi:10.1016/j.indcrop.2015.03.036.
CAS
Article
Google Scholar
Mostafa, D. M., Kassem, A. A., Asfour, M. H., Al Okbi, S. Y., Mohamed, D. A., & Hamed, T. E. S. (2015). Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: in vitro and in vivo evaluation. Journal of Molecular Liquids, 212, 6–15. doi:10.1016/j.molliq.2015.08.047.
CAS
Article
Google Scholar
Moure, A., Franco, D., Sineiro, J., Dominguez, H., Núñez, M. J., & Lema, J. M. (2001). Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Research International, 34(2–3), 103–109. doi:10.1016/S0963-9969(00)00136-8.
CAS
Article
Google Scholar
Muhammad, N., Barkatullah, Ibrar, M., Khan, H., Saeed, M., Khan, A. Z., & Kaleem, W. A. (2013). In vivo screening of essential oils of Skimmia laureola leaves for antinociceptive and antipyretic activity. Asian Pacific Journal of Tropical Biomedicine, 3(3), 202–206. doi:10.1016/S2221-1691(13)60050-7.
Article
Google Scholar
Muriel-Galet, V., Cran, M. J., Bigger, S. W., Hernández-Muñoz, P., & Gavara, R. (2015). Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. Journal of Food Engineering, 149, 9–16. doi:10.1016/j.jfoodeng.2014.10.007.
CAS
Article
Google Scholar
Naik, M. I., Fomda, B. A., Jaykumar, E., & Bhat, J. A. (2010). Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacteria. Asian Pacific Journal of Tropical Medicine, 3(7), 535–538. doi:10.1016/S1995-7645(10)60129-0.
Article
Google Scholar
Nakatsu, T., Lupo, A. T., Chinn, J. W., & Kang, R. K. L. (2000). Biological activity of essential oils and their constituents (part B). In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Vol. 21, pp. 571–631). Amsterdam: Elsevier B.V.
Google Scholar
Negi, P. S. (2012). Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. International Journal of Food Microbiology, 156(1), 7–17. doi:10.1016/j.ijfoodmicro.2012.03.006.
Article
Google Scholar
Nikolic, M., Glamoclija, J., Ferreira, I. C. F. R., Calhelha, R. C., Fernandes, Â., Markovic, T., et al. (2014). Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 52, 183–190. doi:10.1016/j.indcrop.2013.10.006.
CAS
Article
Google Scholar
Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K. M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81(4), 485–493. doi:10.1016/S0308-8146(02)00476-4.
CAS
Article
Google Scholar
Ocaña-Fuentes, A., Arranz-Gutiérrez, E., Señorans, F. J., & Reglero, G. (2010). Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food and Chemical Toxicology, 48(6), 1568–1575. doi:10.1016/j.fct.2010.03.026.
Article
CAS
Google Scholar
Ojeda-Sana, A. M., van Baren, C. M., Elechosa, M. A., Juárez, M. A., & Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31(1), 189–195. doi:10.1016/j.foodcont.2012.09.022.
CAS
Article
Google Scholar
Olagnier, D., Costes, P., Berry, A., Linas, M.-D., Urrutigoity, M., Dechy-Cabaretb, O., & Benoit-Vical, F. (2007). Modifications of the chemical structure of terpenes in antiplasmodial and antifungal drug research. Bioorganic & Medicinal Chemistry Letters, 17(22), 6075–6078. doi:10.1016/j.bmcl.2007.09.056.
CAS
Article
Google Scholar
Ooi, L. S. M., Li, Y., Kam, S.-L., Wang, H., Wong, E. Y. L., & Ooi, V. E. C. (2006). Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. The American Journal of Chinese Medicine, 34(3), 511–522. doi:10.1142/S0192415X06004041.
CAS
Article
Google Scholar
Organização Mundial de Saúde, O. (2015). Food safety. Fact sheet N°399. http://www.who.int/mediacentre/factsheets/fs399/en/. Accessed 24 August 2016.
Otero, V., Becerril, R., Santos, J. A., Rodríguez-Calleja, J. M., Nerín, C., & García-López, M. L. (2014). Evaluation of two antimicrobial packaging films against Escherichia coli O157: H7 strains invitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control, 42, 296–302. doi:10.1016/j.foodcont.2014.02.022.
CAS
Article
Google Scholar
Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52(18), 5598–5605. doi:10.1021/jf049389q.
CAS
Article
Google Scholar
Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2007). Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. Journal of Food Protection, 70(4), 901–908 http://www.ncbi.nlm.nih.gov/pubmed/17477259.
CAS
Article
Google Scholar
Patras, A., Yuan, Y. V., Costa, H. S., & Sanches-Silva, A. (2013). Antioxidant activity of phytochemicals. In B. K. Tiwari, N. P. Brunton, & C. S. Brennan (Eds.), Handbook of plant phytochemicals: sources, stability and extraction (pp. 452–472). Hoboken: John Wiley & Sons, Ltd..
Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, 76, 174–187. doi:10.1016/j.indcrop.2015.06.050.
CAS
Article
Google Scholar
Pavela, R., Žabka, M., Bednář, J., Tříska, J., & Vrchotová, N. (2016). New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Industrial Crops and Products, 83, 275–282. doi:10.1016/j.indcrop.2015.11.090.
CAS
Article
Google Scholar
Pei, R. S., Zhou, F., Ji, B. P., & Xu, J. (2009). Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. Journal of Food Science, 74(7), 379–383. doi:10.1111/j.1750-3841.2009.01287.x.
Article
CAS
Google Scholar
Perdones, A., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979–986. doi:10.1016/j.foodchem.2015.11.054.
CAS
Article
Google Scholar
Periasamy, V. S., Athinarayanan, J., & Alshatwi, A. A. (2016). Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry, 31, 449–455. doi:10.1016/j.ultsonch.2016.01.035.
CAS
Article
Google Scholar
Petretto, G. L., Fancello, F., Zara, S., Foddai, M., Mangia, N. P., Sanna, M. L., et al. (2014). Antimicrobial activity against beneficial microorganisms and chemical composition of essential oil of Mentha suaveolens ssp. insularis grown in Sardinia. Journal of Food Science, 79(3), M369–M377. doi:10.1111/1750-3841.12343.
CAS
Article
Google Scholar
Pilar Santamarina, M., Roselló, J., Giménez, S., & Amparo Blázquez, M. (2016). Commercial Laurus nobilis L. and Syzygium aromaticum L. Merr. & Perry essential oils against post-harvest phytopathogenic fungi on rice. LWT-Food Science and Technology, 65, 325–332. doi:10.1016/j.lwt.2015.08.040.
CAS
Article
Google Scholar
Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30(1), 224–231. doi:10.1016/j.foodhyd.2012.05.019.
CAS
Article
Google Scholar
Pokorny, J., Yanishlieva, N., & Gordon, M. H. (Eds.). (2001). Antioxidants in food: practical applications. CRC Press.
Ponce, A. G., Fritz, R., Del Valle, C. & Roura, S. I. (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT- Food Science and Technology, 36, 679–68. doi:10.1016/S0023-6438(03)00088-4.
Ponce, A. G., Del Valle, C. E. & Roura, S. I. (2004). Natural essential oils as reducing agents of peroxidase activity in leafy vegetables. LWT- Food Science and Technology, 37, 199–204. doi:10.1016/j.lwt.2003.07.005.
Porres-Martínez, M., González-Burgos, E., Accame, M. E. C., & Gómez-Serranillos, M. P. (2013). Phytochemical composition, antioxidant and cytoprotective activities of essential oil of Salvia lavandulifolia Vahl. Food Research International, 54(1), 523–531. doi:10.1016/j.foodres.2013.07.029.
Article
CAS
Google Scholar
Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6, 39. doi:10.1186/1472-6882-6-39.
Article
CAS
Google Scholar
Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201–208. doi:10.1016/j.foodres.2012.08.020.
CAS
Article
Google Scholar
Proestos, C., Sereli, D., & Komaitis, M. (2006). Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chemistry, 95(1), 44–52. doi:10.1016/j.foodchem.2004.12.016.
CAS
Article
Google Scholar
Raeisi, M., Tajik, H., Aliakbarlu, J., Mirhosseini, S. H., & Hosseini, S. M. H. (2015). Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Science and Technology, 64(2), 898–904. doi:10.1016/j.lwt.2015.06.010.
CAS
Article
Google Scholar
Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264. doi:10.1016/j.indcrop.2014.05.055.
CAS
Article
Google Scholar
Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M., Yoshinari, T., Rezaee, M.-B., Jaimand, K., Nagasawa, H., & Sakuda, S. (2008). Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. International Journal of Food Microbiology, 123(3), 228–233. doi:10.1016/j.ijfoodmicro.2008.02.003.
CAS
Article
Google Scholar
Riahi, L., Chograni, H., Elferchichi, M., Zaouali, Y., Zoghlami, N., & Mliki, A. (2013). Variations in Tunisian wormwood essential oil profiles and phenolic contents between leaves and flowers and their effects on antioxidant activities. Industrial Crops and Products, 46, 290–296. doi:10.1016/j.indcrop.2013.01.036.
CAS
Article
Google Scholar
Ribeiro-Santos, R., Carvalho-Costa, D., Cavaleiro, C., Costa, H. S., Albuquerque, T. G., Castilho, M. C., et al. (2015). A novel insight on an ancient aromatic plant: the rosemary (Rosmarinus officinalis L.) Trends in Food Science and Technology, 45(2), 355–368. doi:10.1016/j.tifs.2015.07.015.
CAS
Article
Google Scholar
Ribeiro-Santos, R., Andrade, M., de Melo, N. R., dos Santos, F. R., de Neves, I. A., de Carvalho, M. G., & Sanches-Silva, A. (2017). Biological activities and major components determination in essential oils intended for a biodegradable food packaging. Industrial Crops and Products, 97, 201–210. doi:10.1016/j.indcrop.2016.12.006.
CAS
Article
Google Scholar
Romano, C. S., Abadi, K., Repetto, V., Vojnov, A. A., & Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 115(2), 456–461. doi:10.1016/j.foodchem.2008.12.029.
CAS
Article
Google Scholar
Ross, Z. M., Gara, E. A. O., Hill, D. J., & Sleightholme, H. V. (2001). Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria : Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder, 67(1), 475–480. doi:10.1128/AEM.67.1.475.
Rozman, T., & Jersek, B. (2009). Antimicrobial activity of rosemary extracts (Rosmarinus officinalis L.) against different species of Listeria. Acta agriculturae Slovenica, 93(1), 51–58. doi:10.2478/v10014-009-0007-z.
Article
Google Scholar
Rufino, M. S.., Alve, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006). Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Embrapa-Comunicado Técnico, 125.
Rufino, M. S.., Alve, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS●+. Comunicado Técnico, 128.
Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74–84. doi:10.1016/j.foodhyd.2013.02.008.
CAS
Article
Google Scholar
Sanches-Silva, A., Rodríguez-Bernaldo de Quirós, A., López-Hernández, J., & Paseiro-Losada, P. (2004). Determination of hexanal as indicator of the lipidic oxidation state in potato crisps using gas chromatography and high-performance liquid chromatography. Journal of Chromatography A, 1046(1–2), 75–81. doi:10.1016/j.chroma.2004.06.101.
CAS
Article
Google Scholar
Sánchez Aldana, D., Andrade-Ochoa, S., Aguilar, C. N., Contreras-Esquivel, J. C., & Nevárez-Moorillón, G. V. (2015). Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil. Food Control, 50, 907–912. doi:10.1016/j.foodcont.2014.10.044.
Article
CAS
Google Scholar
Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277–283. doi:10.1016/j.carbpol.2010.04.047.
Article
CAS
Google Scholar
Santos, T. G., Dognini, J., Begnini, I. M., Rebelo, R. A., Verdi, M., de Gasper, A. L., & Dalmarco, E. M. (2013). Chemical characterization of essential oils from Drimys angustifoliaMiers (Winteraceae) and antibacterial activity of their major compounds. Journal of the Brazilian Chemical Society, 24(1), 164–170. doi:10.1590/S0103-50532013000100020.
CAS
Article
Google Scholar
Schaller, M., & Korting, H. C. (1995). Allergie airborne contact dermatitis from essential oils used in aromatherapy. Clinical and Experimental Dermatology, 20(2), 143–145. doi:10.1111/j.1365-2230.1995.tb02719.x.
CAS
Article
Google Scholar
Šegvić Klarić, M., Kosalec, I., Mastelić, J., Piecková, E., & Pepeljnak, S. (2007). Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Letters in Applied Microbiology, 44(1), 36–42. doi:10.1111/j.1472-765X.2006.02032.x.
Article
CAS
Google Scholar
Shahwar, D., Raza, M. A., Bukhari, S., & Bukhari, G. (2012). Ferric reducing antioxidant power of essential oils extracted from Eucalyptus and Curcuma species. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1633–S1636. doi:10.1016/S2221-1691(12)60467-5.
Article
Google Scholar
Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749–7759. doi:10.1021/jf051513y.
CAS
Article
Google Scholar
Silvestre, W. P., Agostini, F., Muniz, L. A. R., & Pauletti, G. F. (2016). Fractionating of green mandarin (Citrus deliciosa Tenore) essential oil by vacuum fractional distillation. Journal of Food Engineering, 178, 90–94. doi:10.1016/j.jfoodeng.2016.01.011.
CAS
Article
Google Scholar
Singh, G., Maurya, S., DeLampasona, M. P., & Catalan, C. A. N. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9), 1650–1661. doi:10.1016/j.fct.2007.02.031.
CAS
Article
Google Scholar
Skandamis, P. N., & Nychas, G.-J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79(1–2), 35–45. doi:10.1016/S0168-1605(02)00177-0.
CAS
Article
Google Scholar
Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Science and Technology, 54(2), 346–352. doi:10.1016/j.lwt.2013.06.017.
CAS
Article
Google Scholar
Stojkovic, D., Glamoclija, J., Ciric, A., Nikolic, M., Ristic, M., Siljegovic, J., & Sokovic, M. (2013). Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Archives of Biological Sciences, 65(2), 639–643. doi:10.2298/ABS1302639S.
Article
Google Scholar
Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4 °C. LWT-Food Science and Technology, 53(2), 499–506. doi:10.1016/j.lwt.2013.02.024.
CAS
Article
Google Scholar
Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., et al. (2012). European pennyroyal (Mentha pulegium) from Portugal: chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Industrial Crops and Products, 36(1), 81–87. doi:10.1016/j.indcrop.2011.08.011.
CAS
Article
Google Scholar
Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43(1), 587–595. doi:10.1016/j.indcrop.2012.07.069.
CAS
Article
Google Scholar
Tian, F., Decker, E. A., & Goddard, J. M. (2013). Controlling lipid oxidation via a biomimetic iron chelating active packaging material. Journal of Agricultural and Food Chemistry, 61(50), 12397–12404. doi:10.1021/jf4041832.
CAS
Article
Google Scholar
Tisserand, R., & Young, R. (2014). Essential oil safety—a guide for health care professionals (Second edi ed.). Churchill Livingstone: Elsevier http://arxiv.org/abs/1011.1669.
Google Scholar
Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2013). Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. Journal of Food Engineering, 117(3), 350–360. doi:10.1016/j.jfoodeng.2013.03.005.
CAS
Article
Google Scholar
Trattner, A., David, M., & Lazarov, A. (2008). Occupational contact dermatitis due to essential oils. Contact Dermatitis, 58(5), 282–284. doi:10.1111/j.1600-0536.2007.01275.x.
CAS
Article
Google Scholar
Tung, Y.-T., Chua, M.-T., Wang, S.-Y., & Chang, S.-T. (2008). Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology, 99(9), 3908–3913. doi:10.1016/j.biortech.2007.07.050.
CAS
Article
Google Scholar
Ud-Daula, A. F. M. S., Demirci, F., Abu Salim, K., Demirci, B., Lim, L. B. L., Baser, K. H. C., & Ahmad, N. (2016). Chemical composition, antioxidant and antimicrobial activities of essential oils from leaves, aerial stems, basal stems, and rhizomes of Etlingera fimbriobracteata (K. Schum.) R.M.Sm. Industrial Crops and Products, 84, 189–198. doi:10.1016/j.indcrop.2015.12.034.
CAS
Article
Google Scholar
Unlu, M., Ergene, E., Unlu, G. V., Zeytinoglu, H. S., & Vural, N. (2010). Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and Chemical Toxicology, 48(11), 3274–3280. doi:10.1016/j.fct.2010.09.001.
CAS
Article
Google Scholar
Uter, W., Schmidt, E., Geier, J., Lessmann, H., Schnuch, A., & Frosch, P. (2010). Contact allergy to essential oils: current patch test results (2000–2008) from the Information Network of Departments of Dermatology (IVDK)*. Contact Dermatitis, 63(5), 277–283. doi:10.1111/j.1600-0536.2010.01768.x.
Article
Google Scholar
Velasco, J., Dobarganes, C., Holgado, F., & Márquez-Ruiz, G. (2009). A follow-up oxidation study in dried micro encapsulated oils under the accelerated conditions of the Rancimat test. Food Research International, 42(1), 56–62. doi:10.1016/j.foodres.2008.08.012.
CAS
Article
Google Scholar
Velluti, A., Sanchis, V., Ramos, A. J., Egido, J., & Marín, S. (2003). Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. International Journal of Food Microbiology, 89(2–3), 145–154. doi:10.1016/S0168-1605(03)00116-8.
CAS
Article
Google Scholar
Viteri Jumbo, L. O., Faroni, L. R. A., Oliveira, E. E., Pimentel, M. A., & Silva, G. N. (2014). Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Industrial Crops and Products, 56, 27–34. doi:10.1016/j.indcrop.2014.02.038.
CAS
Article
Google Scholar
Viuda-Martos, M., Ruiz Navajas, Y., Sánchez Zapata, E., Fernández-López, J., & Pérez-Álvarez, J. A. (2010). Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour and Fragrance Journal, 25(1), 13–19. doi:10.1002/ffj.1951.
CAS
Article
Google Scholar
Viuda-Martos, M., Mohamady, M. A., Fernández-López, J., Abd ElRazik, K. A., Omer, E. A., Pérez-Alvarez, J. A., & Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control, 22(11), 1715–1722. doi:10.1016/j.foodcont.2011.04.003.
CAS
Article
Google Scholar
Volpe, M. G., Siano, F., Paolucci, M., Sacco, A., Sorrentino, A., Malinconico, M., & Varricchio, E. (2015). Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchus mykiss) fillets. LWT-Food Science and Technology, 60(1), 615–622. doi:10.1016/j.lwt.2014.08.048.
CAS
Article
Google Scholar
Wang, W., Wu, N., Zu, Y. G., & Fu, Y. J. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, 108(3), 1019–1022. doi:10.1016/j.foodchem.2007.11.046.
CAS
Article
Google Scholar
Wei, S.-D., Chen, H., Yan, T., Lin, Y.-M., & Zhou, H.-C. (2014). Identification of antioxidant components and fatty acid profiles of the leaves and fruits from Averrhoa carambola. LWT-Food Science and Technology, 55(1), 278–285. doi:10.1016/j.lwt.2013.08.013.
CAS
Article
Google Scholar
Ye, C.-L., Dai, D.-H., & Hu, W.-L. (2013). Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.) Food Control, 30(1), 48–53. doi:10.1016/j.foodcont.2012.07.033.
CAS
Article
Google Scholar
Yen, H. F., Hsieh, C. T., Hsieh, T. J., Chang, F. R., & Wang, C. K. (2015). In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. Journal of Food and Drug Analysis, 23(1), 124–129. doi:10.1016/j.jfda.2014.02.004.
CAS
Article
Google Scholar
Zeng, Q., Zhao, J., Wang, J., Zhang, X., & Jiang, J. (2016). Comparative extraction processes, volatile compounds analysis and antioxidant activities of essential oils from Cirsium japonicum Fisch. ex DC and Cirsium setosum (Willd.) M. Bieb. LWT-Food Science and Technology, 68, 595–605. doi:10.1016/j.lwt.2016.01.017.
CAS
Article
Google Scholar
Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2009). Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science, 82(3), 338–345. doi:10.1016/j.meatsci.2009.02.004.
CAS
Article
Google Scholar