Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 10, pp 1798–1808 | Cite as

Bioplastics of Native Starches Reinforced with Passion Fruit Peel

  • Thaisa M. A. Moro
  • José L. R. AscheriEmail author
  • Juan A. R. Ortiz
  • Carlos W. P. Carvalho
  • Arturo Meléndez-Arévalo
Original Paper

Abstract

Industrial passion fruit juice production generates a large amount of passion fruit waste, which contains about 60% of fibers when dried and could be used as reinforcement of thermoplastic starch. This study aimed to develop an extruded starchy bioplastic reinforced with passion fruit peel (Pfp) (0, 4, 10, 16, and 20%), glycerol (60, 64, 70, 76, and 80 wt%), and starch mix (55% corn and 45% cassava) that were processed at varied screw speeds (66, 80, 100, 120, and 134 rpm). The response surface methodology was applied to analyze the effects of Pfp, glycerol, and screw speed. Mechanical properties, contact angle, and water permeability and solubility were the response variables. Addition of Pfp, up to 4%, improved the bioplastic mechanical properties. High addition of Pfp (16 and 20%) combined with the lowest screw speed (66 rpm) reduced bioplastic water solubility. Water vapor permeability slightly increased with the combination of increasing glycerol content and screw speed. Contact angle was not statically affected by the independent variables. The extrusion showed as an interesting tool that provided greater homogeneity of Pfp incorporated in starch bioplastic, though the mix would benefit from finer Pfp particle size distribution.

Keywords

Thermoplastic extrusion Biofilms Vegetable fibers Response surface methodology Mechanical properties 

Notes

Acknowledgements

The authors gratefully acknowledge the CAPES and CNPq for the scholarships and the FAPERJ for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors attest that there are no interests that competed with the objective, interpretation, and presentation of the results.

References

  1. Agustiniano-Osornio, J. C., Gonzalez-Soto, R. A., Flores-Huicochea, E., Manrique-Quevedo, N., & Sanchez-Hernandez & Bello-Perez L.A. (2005). Resistant starch production from mango starch using a single-screw extruder. Journal of the Science of Food and Agriculture, 85(12), 2105–2110.CrossRefGoogle Scholar
  2. Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(8), 941–946.CrossRefGoogle Scholar
  3. AOAC (2010). Fruits and Fruit Products.Official Methods of Analysis of the Association of Analytical Chemists International (17th ed.). Gaithersburg, ML: AOAC.Google Scholar
  4. Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(7), 839–848.CrossRefGoogle Scholar
  5. ASTM. (2001). ASTM D882-00 standard test method for tensile properties of thin plastic sheeting. West Conshohocken, USA: American Society for Testing and Materials Available at: http://www.astm.org/DATABASE.CART/HISTORICAL/D882-00.htm. Accessed 20 August 2012.Google Scholar
  6. Bangyekan, C., Aht-Ong, D., & Srikulkit, K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63(1), 61–71.CrossRefGoogle Scholar
  7. Bodros, E., Pillin, I., Montrelay, N., & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Composites Science and Technology, 67(3), 462–470.CrossRefGoogle Scholar
  8. Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch chitosan blend biodegradable film. Food Science and Technology, 41(15), 1633–1641.Google Scholar
  9. Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475.CrossRefGoogle Scholar
  10. Brandão, E. M., & Andrade, C. T. (1999). Influência de fatores estruturais no processo de gelificação de pectinas de alto grau de metoxilação. Polímeros, 9(3), 38–44.CrossRefGoogle Scholar
  11. Cao, X., Chen, Y., Chang, P. R., Stumborg, M., & Huneault, M. A. (2008). Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science, 109(37), 3804–3810.CrossRefGoogle Scholar
  12. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicent, A. A. (2012). Effects of interactions between the constituents of chitosan-edible films on their physical properties. Food Bioprocess Technology, 5(20), 3181–3192.CrossRefGoogle Scholar
  13. Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010a). Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, 120(6), 736–740.CrossRefGoogle Scholar
  14. Chang, P. R., Jian, R., Zheng, P., Yu, J., & Ma, X. (2010b). Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydrate Polymers, 79(2), 301–305.CrossRefGoogle Scholar
  15. Chen, B., & Evans, J. R. G. (2005). Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydrate Polymers, 61(3), 455–463.CrossRefGoogle Scholar
  16. Chen, C. H., & Lai, L. S. (2008). Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids, 22(14), 1584–1595.CrossRefGoogle Scholar
  17. Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W., & Wang, P. (2008). Effect of acetylation on the properties of corn starch. Food Chemistry, 106(9), 923–928.CrossRefGoogle Scholar
  18. Chivrac, F., Gueguen, O., Pollet, E., Ahzi, S., Makradi, A., & Averous, L. (2008). Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomaterialia, 4(15), 1707–1714.CrossRefGoogle Scholar
  19. Dean, K. M., Do, M. D., Petinakis, E., & Yu, L. (2008). Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites. Composites Science and Technology, 68(10), 1453–1462C.CrossRefGoogle Scholar
  20. Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51(2), 213–219.CrossRefGoogle Scholar
  21. Enrione, J., Osorio, F., Pedreschi, F., & Hill, S. (2010). Prediction of the glass transition temperature on extruded waxy maize and rice starches in presence of glycerol. Food Bioprocess Technology, 3(7), 791–796.CrossRefGoogle Scholar
  22. Fakhouri, F. M., Fontes, L. C. B., Innocentini-Mei, L. H., & Collares-Queiroz, F. P. (2009). Effect of fatty acid addition on the properties of biopolymer films based on lipophilic maize starch and gelatin. Starch/Stärke, 61(4), 528–536.CrossRefGoogle Scholar
  23. Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Collares-Queiroz, F. P., & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers., 95(2), 681–689.CrossRefGoogle Scholar
  24. Fishman, M. L., Coffin, D. R., Onwulata, C. I., & Konstance, R. P. (2004). Extrusion of pectin and glycerol with various combinations of orange albedo and starch. Carbohydrate Polymers, 57(3), 401–413.CrossRefGoogle Scholar
  25. Galdeano, M. C., Grossmann, M. V. E., Mali, S., Bello-Perez, L. A., Garcia, L. A., & Zamudio-Flores, P. B. (2009). Effects of production process and plasticizers on stability of films and sheets of oat starch. Materials Science and Engineering, 29(3), 492–498.CrossRefGoogle Scholar
  26. Garcia, T. G., Martinez-Bustos, F., Jimenez-Arevalo, A. O., Arencon, D., Games-Perez, J., & Martinez, A. B. (2012). Films of native and modified starch reinforced with fiber: influence of some extrusion variables using response surface methodology. Journal of Applied Polymer Science, 126, E326–E335.Google Scholar
  27. Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11(6), 697–702.CrossRefGoogle Scholar
  28. Gontard, N., Guilbert, S., & Cuq, J. L. (1992). Edible wheat gluten films: influence of the main processes variables on films properties using response surface methodology. Journal of Food Science, 57(1), 190–195.CrossRefGoogle Scholar
  29. Gontard, N., Guilbert, S., & Cuq, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten films. Journal of Food Science, 58(1), 206–211.CrossRefGoogle Scholar
  30. Han, Y., Manolach, S. O., Denes, F., & Rowell, R. M. (2011). Cold plasma treatment on starch foam reinforced with wood fiber for its surface hydrophobicity. Carbohydrate Polymers, 86(9), 1031–1037.CrossRefGoogle Scholar
  31. Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(2), 302–310.CrossRefGoogle Scholar
  32. Kaushika, A., Singh, M., & Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82(2), 337–345.CrossRefGoogle Scholar
  33. Kristo, E., & Biliaderis, C. G. (2007). Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 68(1), 146–158.CrossRefGoogle Scholar
  34. Kulkarni, S. G., & Vijayanand, P. (2010). Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.) LWT - Food Science and Technology, 43(7), 1026–1031.CrossRefGoogle Scholar
  35. Ma, X., Chang, P. R., Yang, J., & Yu, J. (2009). Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydrate Polymers, 75(3), 472–478.CrossRefGoogle Scholar
  36. Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2005). Mechanical and thermal properties of yam starch films. Food Hydrocolloids, 19(1), 157–164.CrossRefGoogle Scholar
  37. Martucci, J. F., & Ruseckaite, R. A. (2009). Tensile properties, barrier properties, and biodegradation in soil of compression molded gelatin-dialdehyde starch films. Journal of Applied Polymer Science, 112(20), 2166–2178.CrossRefGoogle Scholar
  38. Muller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(12), 1328–1333.CrossRefGoogle Scholar
  39. Nascimento, T. A., Calado, V. M. A., & Carvalho, C. W. P. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International., 49(1), 588–595.CrossRefGoogle Scholar
  40. Ortiz, J. A. R., Carvalho, C. W. P., Ascheri, D. P. R., Ascheri, J. L. R., & Andrade, C. T. (2010). Effect of sugar and water contents on non-expanded cassava flour extrudates. Food and Science Technology [Ciencia e Tecnologia de Alimentos], 30(1), 205–212.CrossRefGoogle Scholar
  41. Ramaraj, B. (2007). Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. Journal of Applied Polymer Science, 103(8), 906–916.Google Scholar
  42. Rocha G.O., Farias M.G., Carvalho C.W.P., Ascheri JLR & Galdeano MC (2014). Filmes compostos biodegradáveis a base de amido de mandioca e proteína de soja. Polímeros 24(5), 587–595.Google Scholar
  43. Róz, A. L. D., Veiga-Santos, P., Ferreira, A. M., Antunes, T. C. R., de Leite, F. L., Yamaji, F. M. A., & de Carvalho, J. F. (2016). Water susceptibility and mechanical properties of thermoplastic starch–pectin blends reactively extruded with edible citric acid. Materials Research, 19(1), 138–142.CrossRefGoogle Scholar
  44. Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24(2), 285–290.CrossRefGoogle Scholar
  45. Silva, W. A., Pereira, J., Carvalho, C. W. P., & Ferrua, F. Q. (2007). Determination of color, topographic superficial image and contact angle of the biofilms of different starch sources. Ciência e Agrotecnologia, 31(1), 154–163.CrossRefGoogle Scholar
  46. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7–16.CrossRefGoogle Scholar
  47. Teixeira, E. M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422–431.CrossRefGoogle Scholar
  48. The, D. P., Debeaufort, F., Voilley, A., & Luu, D. (2009). Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. Journal of Food Engineering, 90(4), 548–558.CrossRefGoogle Scholar
  49. Vargas-Solórzano, J. W., Carvalho, C. W. P., Ascheri, J. L. R., Takeiti, C. Y., & Queiroz, V. A. V. (2014). Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International, 55(1), 37–44.CrossRefGoogle Scholar
  50. Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., & Scamparini, A. R. P. (2007). Sucrose and inverted sugar as plasticizer. effect on cassava starch–gelatin film mechanical properties, hydrophilicity and water activity. Food Chemistry, 103(3), 255–262.CrossRefGoogle Scholar
  51. Wan, Y. Z., Honglin, L., He, F., Liang, H., Huang, Y., & Li, X. L. (2009). Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Composites Science and Technology, 69(10), 1212–1217.CrossRefGoogle Scholar
  52. Wang, L., Liu, L., Holmes, J., Kerry, J. F., & Kerry, J. P. (2007). Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. International Journal of Food Science and Technology, 42(8), 1128–1138.CrossRefGoogle Scholar
  53. Wu, Y., Geng, F., Chang, P. R., Yu, J., & Ma, X. (2009). Effect of agar on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76(2), 299–304.CrossRefGoogle Scholar
  54. Zamudio-Flores, P. B., Bautista-Baños, S., Salgado-Delgado, R., & Bello-Perez, L. R. (2009). Effect of oxidation level on the dual modification of banana starch: the mechanical and barrier properties of its films. Journal of Applied Polymer Science, 112(7), 822–829.CrossRefGoogle Scholar
  55. Zhang, Y., & Han, J. H. (2008). Sorption isotherm and plasticization effect of moisture and plasticizers in pea starch film. Journal of Food Science, 73(7), E313–E324.CrossRefGoogle Scholar
  56. Zhang, S. D., Zhang, Y. R., Zhu, J., Wang, X. L., Yang, K. K., & Wang, Y. Z. (2007). Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch/Stärke, 59(2), 258–268.CrossRefGoogle Scholar
  57. Zhou, J., Ma, Y., Ren, L., Tong, J., Liu, Z., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydrate Polymers, 76(6), 632–638.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Post-Graduate Program in Food Science and TechnologyUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  2. 2.Food Extrusion and Physical Properties LabEmbrapa Food TechnologyRio de JaneiroBrazil
  3. 3.Food Science and Technology DepartmentEscuela Agrícola Panamericana El ZamoranoYeguare Valley, Municipality of San Antonio de OrienteHonduras

Personalised recommendations