Effect of Medium-High Energy Emulsification Condition on Physicochemical Properties of β-Sitosterol Multiple Emulsion

Abstract

Phytosterols are used to lower the blood cholesterol. β-Sitosterol is one of the most important phytosterols with very poor water solubility and bioaccessibility. The main goal of the current research was to investigate the effects of different emulsification variables (i.e. shear, time, pressure and cycle) on the physicochemical properties, release behaviour and encapsulation efficiency of β-sitosterol in water-in-oil-in water (W/O/W) emulsion. Initially, 19 β-sitosterol emulsions were prepared under different experimental conditions (shear 3000 and 6000 rpm; time 2.5 and 5 min; pressure 100, 200 and 300 bar; cycle 1–3). In this study, the β-sitosterol emulsion prepared at 6000 rpm, 5 min, 300 bar and 3 cycles had the smallest average droplet size (139 nm) among all prepared samples. The interaction between shear and time showed the most significant (P < 0.05) effect on the polydispersity index (PDI) and turbidity of the β-sitosterol emulsion. Increasing homogenization pressure and cycle led to improving emulsion stability and encapsulation efficiency. The β-sitosterol emulsion homogenised at 100 bar for 1 cycle had the highest encapsulation efficiency (81.7%) among all samples. The optimization study showed that the emulsification at 300 bar for 3 cycles resulted in the most desirable β-sitosterol emulsion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anarjan, N., Tan, C. P., Mirhosseini, H., & Bin Baharin, B. S. (2011). Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT- Food Science and Technology, 44, 1658–1665.

    CAS  Article  Google Scholar 

  2. Araújo, B. D. C. L., Silva, L. S., Galvão, A. M. M., Ferreira, R. A. M., Araújo, L. E., Randau, P. K., & Soares, A. L. L. (2013). Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Revista Brasileira de Farmacognosia, 23, 736–742.

  3. Bai, L., & McClements, D. J. (2016). Development of microfluidization methods for efficient production of concentrated nanoemulsion: comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science, 466, 206–212.

    CAS  Article  Google Scholar 

  4. Benichou, A., Aserin, A., & Garti, N. (2007). W/O/W double emulsions stabilized with WPI–polysaccharide complexes. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 294, 20–32.

    CAS  Article  Google Scholar 

  5. Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its fictional characterization. Innovative Food Science & Emerging Technologies, 5, 420–428.

    Article  Google Scholar 

  6. Chen, Q., McGillivray, D., Wen, J., Zhong, F., & Quek, S. Y. (2013). Co-encapsulation of fish with phytosterol esters and limonene by milk proteins. Journal of Food Engineering, 117, 505–512.

    CAS  Article  Google Scholar 

  7. Desrumaux, A., Loisel, C., & Marcand, J. (2000). Performances of a new high pressure homogenizer to make fine food emulsions. Engineering and Food, 1, 633–637.

    Google Scholar 

  8. Dickinson, E. (2012). Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, 24(1), 4–12.

    CAS  Article  Google Scholar 

  9. Galooyak, S. S., Dabir, B., & Zolfaghari, M. (2015). An innovative numerical approach for simulation of emulsion formation in a microfluidizer. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 487, 169–179.

    Article  Google Scholar 

  10. Garti, N., & Lutz, R. (2004). Recent progress in double emulsions. Interf Sci Techno., 4, 557–605.

    CAS  Article  Google Scholar 

  11. Giroux, J. H., Robitaille, G., & Britten, M. (2016). Controlled release of casein-derived peptides in the gastrointestinal environment by encapsulation in water-in-oil-in-water doubleemulsions. LWT- Food Science and Technology, 69, 225–232.

    CAS  Article  Google Scholar 

  12. Hayes, M. G., & Kelly, A. L. (2003). High pressurehomogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. The Journal of Dairy Research, 70(3), 297–305.

    CAS  Article  Google Scholar 

  13. Hebishy, E., Buffa, M., Guamis, B., Blasco-Moreno, A., & Trujillo, A. J. (2015). Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: effects of pressure and protein concentration on emulsion characteristics. Food Sci Emerg Technol, 32, 79–90.

    CAS  Article  Google Scholar 

  14. Hemar, Y., Cheng, L. J., Luz Sanguansri, O., & Augustin, M. (2010). Encapsulation of resveratrol using water-in-oil-in-water double emulsion. Food Biophysics, 5, 120–127.

    Article  Google Scholar 

  15. Hernández-Marín, N. Y., Lobato-Calleros, C., Román-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2016). Physical properties and release behaviour of caffeine multiple emulsions stabilized by binary or ternary biopolymer soluble complexes under acid, bile and yogurt storage conditions. Food Hydrocolloids, 58, 42–48.

    Article  Google Scholar 

  16. Hou, Z., Liu, Y., Lei, F., & Gao, Y. (2014). Investigation into the in vitro release properties of β-carotene in emulsions stabilized by different emulsifiers. LWT- Food Science and Technology, 59, 867–873.

    CAS  Article  Google Scholar 

  17. Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202.

    CAS  Article  Google Scholar 

  18. Kim, N. S., Lee, J. H., Han, K. M., Kim, J. W., Cho, S., & Kim, J. (2014). Discrimination of commercial cheeses from fatty acid profiles and phytosterol contents obtained by GC and PCA. Food Chemistry, 143, 40–47.

    CAS  Article  Google Scholar 

  19. Lee, L., Hancocks, R., Noble, I., & Norton, I. T. (2014). Production of water-in-oil nanoemulsions using high pressurehomogenisation: a study on droplet break-up. Journal of Food Engineering, 131, 33–37.

    CAS  Article  Google Scholar 

  20. Leong, W. F., Lai, O. M., Long, K., Che Man, Y. B., Misran, M., & Tan, C. P. (2011). Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chemistry, 129, 77–83.

    CAS  Article  Google Scholar 

  21. McClements, D. J. (2012). Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Advances in Colloid and Interface Science, 174, 1–30.

    CAS  Article  Google Scholar 

  22. McClements, D. J. (2005a). Emulsion stability, in food emulsions principles, practices, and techniques. Florida: CRC Press.

    Google Scholar 

  23. McClements, D. J. (2005b). Interfacial properties and their characterization, in: Food emulsions: principles, practices, and techniques. CRC Press LLC.

  24. Menéndez-Carreño, M., Knol, D., & Janssen, H. (2016). Development and validation of methodologies for the quantification of phytosterols and phytosterol oxidation products in cooked and baked food products. Journal of Chromatography. A, 1428, 316–325.

    Article  Google Scholar 

  25. Mirhosseini, H., & Tabatabaee Amid, B. (2012). Influence of chemical extraction conditions on the physicochemical and functional properties of polysaccharide gum from durian (Duriozibethinus) seed. Molecules, 17, 6465–6480.

    CAS  Article  Google Scholar 

  26. Mirhosseini, H., Tan, C. P., Aghlara, A., Hamid, N. S. A., Yusof, S., & Chern, B. H. (2008). Influence of pectin and CMC on physical stability, turbidity loss rate, cloudiness and flavor release of orange beverage emulsion during storage. Carbohydrate Polymers, 73, 83–91.

    CAS  Article  Google Scholar 

  27. Mirhosseini, H., & Tan, C. P. (2009). Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chemistry, 115, 324–333.

    CAS  Article  Google Scholar 

  28. Pan, Y., & Nitin, N. (2016). Real-time measurements to characterize dynamics of emulsion interface during simulated intestinal digestion. Colloids and Surfaces, B: Biointerfaces, 141, 233–241.

    CAS  Article  Google Scholar 

  29. Peng, J., Dong, W. J., Li, L., Xu, J. M., Jin, D. J., & Xia, X. J. (2015). Effect of high pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions. J Food Drug., 23, 828–835.

    CAS  Article  Google Scholar 

  30. Pua, C. K., Nazimah, S. A. H., Tan, C. P., Mirhosseini, H., Abd. Rahman, R., & Rusul, G. (2010). Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT- Food Science and Technology, 43, 343–349.

    CAS  Article  Google Scholar 

  31. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25, 1000–1008.

    CAS  Article  Google Scholar 

  32. Rocha-Selmi, G. A., Bozza, F. T., Thomazini, M., Bolin, H. M. A., & Fávaro-Trindade, C. S. (2013). Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry, 139, 72–78.

    CAS  Article  Google Scholar 

  33. Samaram, S., Mirhosseini, H., Tan, C. P., & Ghazali, H. (2014). Ultrasound-assisted extraction and solvent extraction of papaya seed oil: crystallization and thermal behavior, saturation degree, color and oxidative stability. Indust Crop Sci., 52, 702–708.

    CAS  Article  Google Scholar 

  34. San Martín-González, M. F., Roach, A., & Harte, F. (2009). Rheological properties of corn oil emulsion stabilized by commercial micellar casein and high pressure homogenization. LWT- Food Science and Technology, 42, 307–311.

    Article  Google Scholar 

  35. Schuch, A., Wrenger, J., & Schuchmann, H. P. (2014). Production of W/O/W double emulsions. Part II: Influence of emulsification device on the release of water by coalescence. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 461, 344–351.

    CAS  Article  Google Scholar 

  36. Sharma, V., Anandhakumar, S., & Sasidharan, M. (2015). Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Materials Science and Engineering, 56, 393–400.

    CAS  Article  Google Scholar 

  37. Stefanović, A.B., Jovanović, J.R., Dojčinović, M.B., Lević, S.M., Nedović, V.A., Bugarski, B.M., Knežević-Jugović, Z.D. 2017. Effect of the controlled high-intensity ultrasound on improving functionality and structural changes of egg white proteins. Food Bioprocess Techno, doi: 10.1007/s11947-017-1884-5.

  38. Tabatabaee Amid, B., & Mirhosseini, H. (2014). Stabilization of water in oil in water (W/O/W) emulsion using protein isolated-conjugated durian seed gum: enhancement of interfacial activity through conjugation process. Colloids and Surfaces, B: Biointerfaces, 113, 107–114.

    CAS  Article  Google Scholar 

  39. Tang, S. Y., Shridharan, P., & Manickam, S. (2013). Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer, Ultrason. Sonochemistry, 20, 485–497.

    CAS  Article  Google Scholar 

  40. De Barros Fernandes, R. V., Silva, E. K., Borges, S. V., De Oliveira, C. R., Yoshida, M. I., Da Silva, Y. F., Do Carmo, E. L., Azevedo, V. M., & Botrel, D. A. (2017). Proposing novel encapsulating matrices for spray-dried ginger essential oil from the whey protein isolate-inulin/maltodextrin blends. Food and Bioprocess Technology, 10(1), 115–130.

    Article  Google Scholar 

  41. Zhang, J., Bing, L., & Reineccius, G. A. (2016). Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chemistry, 192, 53–59.

Download references

Acknowledgments

We appreciate the financial support by University Putra Malaysia to support this study through Putra grant (GP-IPT/2013/94191600/GRANT PUTRA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirhosseini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Momeny, E., Mirhosseini, H. & Sarker, M.I. Effect of Medium-High Energy Emulsification Condition on Physicochemical Properties of β-Sitosterol Multiple Emulsion. Food Bioprocess Technol 10, 1642–1654 (2017). https://doi.org/10.1007/s11947-017-1932-1

Download citation

Keywords

  • β-Sitosterol
  • Phytosterol
  • Nanoemulsifiation
  • Encapsulation efficiency
  • Release behaviour
  • Emulsion stability
  • Cholesterol