Skip to main content

Advertisement

Log in

Influence of Different Cooking Methods on the Concentration of Glucosinolates and Vitamin C in Broccoli

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Broccoli belongs to the Brassicaceae family and the Brassica genus, also designated crucifers, which has been linked to reduced risk of certain diseases for their content of compounds like glucosinolates (GLS) and vitamin C. Isothiocyanates, nitriles, and thiocyanates are degradation products of glucosinolates, are substances that protect cells against oxidative stress, and present many other health benefits. Vitamin C also contains antioxidant properties that contribute to the beneficial effects that broccoli have for health. The present paper is an overview of the reduction of secondary plant products, such as GLS and vitamin C, by cooking. Nonetheless, these concentrations can be modified if the cell structure of the plant is disrupted, e.g., while cutting, chewing, or cooking. Myrosinase can come into contact with GLS and hydrolyze it to isothiocyanate sulforaphane or sulforaphane nitrile, depending on the environmental conditions, which produces changes in the composition and concentration of GLS. Thus, cooking induces many chemical and physical modifications in food, among which GLS and vitamin C content in broccoli can change. Vitamin C and GLS are water-soluble, which makes them more susceptible to loss during the cooking process. Despite some controversy, most reviewed studies show that conventional cooking methods (boiling, steaming, and frying) and nonconventional ones (microwaving) significantly lead to the degradation of vitamin C and GLS. Nonetheless, steaming is the conventional method that obtains the best result to better preserve these two compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleksandrova, L. G., Korolev, A. M., & Preobrazhenskaya, M. N. (1992). Study of natural ascorbigen and related compounds by HPLC. Food Chemistry, 45(1), 61–69.

    Article  CAS  Google Scholar 

  • Ares, A. M., Nozal, M. J., & Bernal, J. (2013). Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. Journal of Chromatography, 1313, 78–95.

    Article  CAS  Google Scholar 

  • Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84, 1553–1561.

    Article  CAS  Google Scholar 

  • Baik, H. Y., Juvik, J. A., Jeffery, E. H., Wallig, M. A., Kushad, M., & Klein, B. P. (2003). Relating glucosinolate content and flavor of broccoli cultivars. Journal of Food Science, 68(3), 1043–1050.

    Article  CAS  Google Scholar 

  • Barakat, H., & Rohn, S. (2014). Effect of different cooking methods on bioactive compounds in vegetarian, broccoli-based bars. Journal of Functional Foods, 11, 407–416.

    Article  CAS  Google Scholar 

  • Belitz, H. D., Grosch, W., & Schieberle. (2009). Food chemistry. Berlin: Springer.

    Google Scholar 

  • Bennett, R. N., Mellon, F. A., & Kroon, P. A. (2004). Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair HPLC negative ion electrospray mass spectrometry. Journal of Agricultural and Food Chemistry, 52, 428–438.

    Article  CAS  Google Scholar 

  • Bones, A. M., & Rossiter, J. T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67(11), 1053–1067.

    Article  CAS  Google Scholar 

  • Bongoni, R., Verkerk, R., Steenbekkers, B., Dekker, M., & Stieger, M. (2014). Evaluation of different cooking conditions on broccoli (Brassica oleracea var. italica) to improve the nutritional value and consumer acceptance. Plant Foods for Human Nutrition, 69, 228–234.

    Article  CAS  Google Scholar 

  • Bradfield, C. A., & Bjeldanes, L. F. (1987). Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. Journal of Toxicology and Environmental Health, 21, 311–323.

    Article  CAS  Google Scholar 

  • Bureau, S., Mouhoubi, S., Touloumet, L., Garcia, C., Moreau, F., Bédouet, V., & Renard, C. M. G. C. (2015). Are folates, carotenoids and vitamin C affected by cooking? Four domestic procedures are compared on a large diversity of frozen vegetables. LWT – Food Science and Technology, 64, 735–741.

    Article  CAS  Google Scholar 

  • Carlson, D. G., Daxenbicher, M. E., & van Etten, C. H. (1987). Glucosinolates in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, collards, cale, mustard greens, and kohlrabi. Journal of the American Society for Horticultural Science, 112, 173–178.

    CAS  Google Scholar 

  • Celik, H., Ariburnu, E., Baymak, M. S., & Yesilada, E. (2014). A rapid validated HPLC method for determination of sulforaphane and glucoraphanin in broccoli and red cabbage prepared by various techniques. Analytical Methods, 6, 4559–4566.

    Article  CAS  Google Scholar 

  • Cheng, D. L., Hashimoto, K., & Uda, Y. (2004). In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food and Chemical Toxicology, 42, 351–357.

    Article  CAS  Google Scholar 

  • Cheung, K. L., Khor, T. O., & Kong, A. N. (2009). Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharmaceutical Research, 26(1), 224–231.

    Article  CAS  Google Scholar 

  • Chu, Y. F., Sun, J., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common vegetables. Journal of Agricultural and Food Chemistry, 50, 6910–6916.

    Article  CAS  Google Scholar 

  • Cieslik, E., Leszczynska, T., Filipiak-Florkiewicz, A., Sikora, E., & Pisulewski, P. M. (2007). Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chemistry, 105, 976–981.

    Article  CAS  Google Scholar 

  • Cisneros-Zevallos, L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. Journal of Food Science, 68, 1560–1565.

    Article  CAS  Google Scholar 

  • Conaway, C. C., Getahun, S. M., Liebes, L. L., Pusateri, D. J., Topham, D. K. W., Botero-Omary, M., & Chung, F. (2000). Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and Cancer, 38, 168–178.

    Article  CAS  Google Scholar 

  • Davey, M. W., Van Montago, M., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I. J. J., Strain, J. J., Favell, D., & Fletcher, J. (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80, 825–860.

    Article  CAS  Google Scholar 

  • Denancé, N., Sánchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4, 155–166.

    Article  Google Scholar 

  • Dias, E.C.S, Souza, N.P., Rocha, É.F.F. (2013). Branqueamento de alimentos: uma revisão bibliográfica. IX Congresso de Iniciação Científica do IFRN.

  • Dinkova-Kostova, A. T., & Kostov, R. V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 18(6), 337–347.

    Article  CAS  Google Scholar 

  • Domínguez-Perles, R., Mena, P., García-Vigueira, C., & Moreno, D. A. (2014). Brassica foods as a dietary source of vitamin C: a review. Critical Reviews in Food Science and Nutrition, 54, 1076–1091.

    Article  CAS  Google Scholar 

  • Drobnica, Ľ., & Augustin, J. (1965). Reaction of isothiocyanates with amino acids, peptides and proteins. III. Kinetics and mechanism of the reaction of aromatic isothiocyanates with thioglycolic acid. Collection of Czechoslovak Chemical Communications, 30(5), 1618–1625.

    Article  CAS  Google Scholar 

  • Drobnica, Ľ., Kristian, P., & Augustin, J. (1977). The chemistry of the −NCS group. In S. Patai (Ed.), The chemistry of cyanates and their thio derivatives, part 2 (pp. 1003–1221). New York: Wiley.

    Chapter  Google Scholar 

  • Fabbri, A. D., & Crosby, G. A. (2016). A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. International Journal of Gastronomy and Food Science, 3, 2–11.

    Article  Google Scholar 

  • Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5–51.

    Article  CAS  Google Scholar 

  • Faller, A. L. K., & Fialho, E. (2009). The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International, 42, 210–215.

    Article  CAS  Google Scholar 

  • Fan, Z. X., Lei, W. X., Sun, X. L., Yu, B., Wang, Y. Z., & Yang, G. S. (2008). The association of Sclerotinia sclerotiorum resistance with glucosinolates in Brassica napus double-low DH population. Journal of Plant Pathology, 43–48.

  • Favell, D. J. (1998). A comparison of the vitamin C content of fresh and frozen vegetables. Food Chemistry, 62, 59–64.

    Article  CAS  Google Scholar 

  • Fieldsend, J., & Milford, G. F. J. (1994). Changes in glucosinolates during crop development in single and double-low genotypes of winter oilseed rape (Brassica napus). I. Production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulphur within the crop. Annals of Applied Biology, 124, 531–542.

    Article  CAS  Google Scholar 

  • Fiore, A., Monaco, R. D., Cavella, S., Visconti, A., Karneili, O., Bernhardt, S., & Fogliano, V. (2013). Chemical profile and sensory properties of different foods cooked by a new radiofrequency oven. Food Chemistry, 139, 515–520.

    Article  CAS  Google Scholar 

  • Francisco, M., Velasco, P., Moreno, D. A., García-Vigueira, C., & Cartea, M. E. (2010). Cooking methods of Brassica rapa affect the preservation of GLS, phenolics and vitamin C. Food Research International, 43, 1455–1463.

    Article  CAS  Google Scholar 

  • Franke, A. A., Custer, L. J., Arakaki, C., & Murphy, S. P. (2004). Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. Journal of Food Composition and Analysis, 17, 1–35.

    Article  CAS  Google Scholar 

  • Galgano, F., Favati, F., Caruso, M., Pietrafesa, A., & Natella, S. (2007). The influence of processing and preservation on the retention of health-promoting compounds in broccoli. Journal of Food Science, 72, 2.

    Article  CAS  Google Scholar 

  • Ghawi, S. K., Methven, L., Rastall, R. A., & Niranjan, K. (2011). Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: a kinetic study. Food Chemistry, 131(4), 1240–1247.

    Article  CAS  Google Scholar 

  • Ghawi, S. K., Methven, L., & Niranjan, K. (2013). The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chemistry, 138, 1734–1741.

    Article  CAS  Google Scholar 

  • Giambanelli, E., Verkerk, R., Fogliano, V., Capuano, E., D’Antuono, L. F., & Oliviero, T. (2015). Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients. RSC Advances, 5(82), 66894–66900.

    Article  CAS  Google Scholar 

  • Gliszczyńska-Świgɫo, A., Ciska, E., Pawlak-Lemańska, K., Chmielewski, J., Borrowski, T., & Tyrakowska, B. (2006). Changes in the content health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants, 23, 1088–1098.

    Article  CAS  Google Scholar 

  • Gonçalves, E. M., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2011). Degradation kinetics of colour, vitamin C and drip loss in frozen broccoli (Brassica oleracea L. ssp. italica) during storage at isothermal and non-isothermal conditions. International Journal of Refrigeration, 34, 2136–2144.

    Article  CAS  Google Scholar 

  • Goodrich, R. M., Parker, R. S., Lisk, D. J., & Stoewsand, G. S. (1988). Glucosinolate, carotene and cadmium content of Brassica oleracea grown on municipal sewage sludge. Food Chemistry, 27, 141–150.

    Article  CAS  Google Scholar 

  • Goodrich, R. M., Anderson, J. L., & Stoewsand, G. S. (1989). Glucosinolates changes in blanched broccoli and Brussels sprouts. Journal of Food Processing and Preservation, 13, 275–280.

    Article  CAS  Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2013). Retention of ascorbic acid during drying of tomato halves and tomato pulp. Drying Technology, 24(1), 57–64.

    Article  CAS  Google Scholar 

  • Grubb, C. D., & Abel, S. (2006). Glucosinolate metabolism and its control. Trends in Plant Science, 11(2), 89–100.

    Article  CAS  Google Scholar 

  • Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Bilger, W., Berge, A., Haffner, K., & Solhaug, K. A. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biology and Technology, 45, 1–10.

    Article  CAS  Google Scholar 

  • Halkier, B. A., & Du, L. (1997). The biosynthesis of glucosinolates. Trends in Plant Science, 2(11), 425–431.

    Article  Google Scholar 

  • Hanschen, F. S., Lamy, E., Schreiner, M., & Rohn, S. (2014). Reactivity and stability of glucosinolates and their breakdown products in foods. Angewandte Chemie International Edition, 53(43), 11430–11450.

    Article  CAS  Google Scholar 

  • Holst, B., & Williamson, G. (2004). A critical review of the bioavailability of glucosinolates and related compounds. Natural Product Reports, 21, 425–447.

    Article  CAS  Google Scholar 

  • Hoover, D. G. (1997). Minimally processed fruits and vegetables: reducing microbial load by non thermal physical treatments. Food Technology, 51, 66–71.

    Google Scholar 

  • Howard, L. A., Wong, A. D., Perry, A. K., & Klein, B. P. (1999). ß-Carotene and ascorbic acid retention in fresh and processed vegetables. Journal of Food Science, 64, 929–936.

    Article  CAS  Google Scholar 

  • Hrncirik, K., & Velisek, J. (1997). Glucosinolate content of common Brassicaceae family vegetables. Potravinarske Vedy-UZPI (Czech Republic), 15, 161–172.

    CAS  Google Scholar 

  • Hrncirik, K., Valusek, J., & Velisek, J. (1998). A study on the formation and stability of ascorbigen in an aqueous system. Food Chemistry, 63, 349–355.

    Article  CAS  Google Scholar 

  • Hrncirik, K., Valusek, J., & Velisek, J. (2001). Investigation of ascorbigen as a breakdown product of glucobrassicin autolysis in Brassica vegetables. European Food Research and Technology, 212, 576–581.

    Article  CAS  Google Scholar 

  • Hussein, A., Odumeru, J. A., Ayanbadejo, T., Faulkner, H., McNab, W. B., Hager, H., & Szijarto, L. (2000). Effect of processing on vitamin C and ß-carotene content of ready-to-use (RTU) vegetables. Food Research International, 33, 131–136.

    Article  CAS  Google Scholar 

  • Hwang, E. S., & Kim, G. H. (2013). Effects of various heating methods on glucosinolate, carotenoid and tocopherols concentration in broccoli. International Journal of Food Science and Nutrition, 64, 103–111.

    Article  CAS  Google Scholar 

  • Jagdish, S., Rai, M., Upadhyay, A. K., Bahadur, A., Chaurasia, S. N. S., & Singh, K. P. (2006). Antioxidant phytochemicals in broccoli (Brassica oleracea L. var. italica Plenk) cultivars. Journal of Food Science and Technology, 43, 391–393.

    CAS  Google Scholar 

  • Jia, C. G., Xu, C. J., Wei, J., Yuan, J., Yuan, G. F., Wang, B. L., & Wang, Q. M. (2009). Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chemistry, 114(1), 28–37.

    Article  CAS  Google Scholar 

  • Jiménez-Monreal, A. M., Garcia-Diz, L., Martinéz-Tomé, M., Mariscal, M., & Murcia, M. A. (2009). Influence of cooking methods on antioxidant activity of vegetables. Journal of Food Science, 74, 3.

    Article  CAS  Google Scholar 

  • Jin, X., Oliviero, T., van der Sman, R. G. M., Verkerk, R., Dekker, M., & van Boxtel, A. J. B. (2014). Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica). LWT-Food Science and Technology, 59(1), 189–195.

    Article  CAS  Google Scholar 

  • Jiratanan, T., & Liu, R. H. (2004). Antioxidant activity of processed table beets (Beta vulgaris var. conditiva) and green beans (Phaseolus vulgaris L.) Journal of Agricultural and Food Chemistry, 52, 2659–2670.

    Article  CAS  Google Scholar 

  • Johnson, I. T. (2002). Glucosinolates: bioavailability and importance to health. Institute of Food Research, 72(1), 26–31.

    CAS  Google Scholar 

  • Jones, R. B., Frisina, C. L., Winkler, S., Imsic, M., & Tomkins, R. B. (2010). Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florest. Food Chemistry, 123, 237–242.

    Article  CAS  Google Scholar 

  • Kim, J. H., & Jander, G. (2007). Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. The Plant Journal, 49(6), 1008–1019.

    Article  CAS  Google Scholar 

  • Koh, E., Wimalasiri, K. M. S., Chassy, A. W., & Mitchell, A. E. (2009). Content of ascorbic acid, queracetin, kaempferol and total phenolics in commercial broccoli. Journal of Food Composition and Analysis, 22, 637–643.

    Article  CAS  Google Scholar 

  • Korolev, A. M., Yudina, L. N., Rozhkov, I. I., Lysenkova, L. N., Lazhko, E. I., Luzikov, Y. N., & Preobrazhenskaya, M. N. (2001). The formation of 2-hydroxy-4-hydroxymethyl-3-(indol-3-yl) cyclopent-2-enone derivatives from ascorbigens. Carbohydrate Research, 330(4), 469–477.

    Article  CAS  Google Scholar 

  • Kravchenko, L. V., Avren’eva, L. I., Guseva, G. V., Posdnyakov, A. L., & Tutel’yan, V. A. (2001). Effect of nutritional indoles on activity of xenobiotic metabolism enzymes and T-2 toxicity in rats. Bulletin of Experimental Biology and Medicine, 131(6), 544–547.

    Article  CAS  Google Scholar 

  • Kroll, J., & Jancke, H. J. (1994). Reaktionen von Benzyl ITC mit Glutathion: NMR spektroskopische Untersuchungen (Wissenschaftlicher Kurzbericht). Food/Nahrung, 38(1), 96–98.

    Article  CAS  Google Scholar 

  • Kumar, S., & Andy, A. (2012). Health promoting bioactive phytochemicals from Brassica. International Food Research Journal, 19, 141–152.

    CAS  Google Scholar 

  • Latté, K. P., Appel, K. E., & Lampen, A. (2011). Health benefits and possible risks of broccoli. Food and Chemical Toxicology, 49, 3287–3309.

    Article  CAS  Google Scholar 

  • Latxague, L., Gardrat, C., Coustille, J. L., Viaud, M. C., & Rollin, P. (1991). Identification of enzymatic degradation products from synthesized glucobrassicin by gas chromatography-mass spectrometry. Journal of Chromatography A, 586(1), 166–170.

    Article  CAS  Google Scholar 

  • Lemoine, M. L., Civello, P. M., Martinez, G. A., & Chaves, A. R. (2007). Influence of postharvest UV-C treatment on refrigerated storage of minimally processed broccoli (Brassica oleracea var. italica). Journal of the Science of Food and Agriculture, 87, 1132–1139.

    Article  CAS  Google Scholar 

  • Lešková, E., Kubíková, J., Kováčiková, E., Košická, M., Porubská, J., & Holčiková, K. (2006). Vitamin losses: retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19, 252–276.

    Article  CAS  Google Scholar 

  • Lewis, J., & Fenwick, G. R. (1987). Glucosinolate content of Brassica vegetables: analysis of twenty-four cultivars of calabrese (green sprouting broccoli, Brassica oleracea L. var. botrytis subvar. cymosa Lam.) Food Chemistry, 25, 259–268.

    Article  CAS  Google Scholar 

  • López-Berenguer, C., Carvajal, M., Moreno, D. A., & García-Vigueira, C. (2007). Effects of microwave cooking conditions on bioactive compounds present in broccoli influorescences. Journal of Agricultural and Food Chemistry, 55, 10001–10007.

    Article  CAS  Google Scholar 

  • López-Berenguer, C., Martínez-Ballesta, M. C., Moreno, D. A., Carvajal, M., & García-Vigueira, C. (2009). Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. Journal of Agricultural and Food Chemistry, 57, 572–578.

    Article  CAS  Google Scholar 

  • Losso, J. N., & Truax, R. E. (2009). Comparative inhibitory activities of sulforaphane and phenethyl isothiocyanate against leukemia resistant CEM/C2 cancer cells. Journal of Functional Foods, 1, 229–235.

    Article  CAS  Google Scholar 

  • Mahn, A., & Reyes, A. (2012). An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Science and Technology International, 18(6), 503–514.

    Article  CAS  Google Scholar 

  • Mangels, A. R., Block, G., Frey, C. M., Patterson, B. H., Taylor, P. R., Norkus, E. P., & Levander, O. A. (1993). The bioavailability to humans of ascorbic acid from oranges, orange juice and cooked broccoli is similar to that of synthetic ascorbic acid. Journal of Nutrition, 123, 1054–1061.

    CAS  Google Scholar 

  • Martínez-Hernández, G. B., Artés-Hernández, F. G., Gomez, P. A., & Artés, F. (2013). Innovative cooking techniques for improving the overall quality of a kalian hybrid broccoli. Food and Bioprocess Technology, 6, 2135–2149.

    Article  CAS  Google Scholar 

  • Martínez-Sánchez, A., Allende, A., Bennett, R. N., Ferreres, F., & Gil, M. I. (2006). Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biology and Technology, 42, 86–97.

    Article  CAS  Google Scholar 

  • Martínez-Villaluenga, C., Peñas, E., Frías, J., Ciska, E., Honke, J., Piskula, M. K., & Vidal-Valverde, C. (2009). Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. Journal of Food Science, 74(1), C62–C67.

    Article  CAS  Google Scholar 

  • McDanell, R., McLean, A. E., Hanley, A. B., Heaney, R. K., & Fenwick, G. R. (1987). Differential induction of mixed-function oxidase (MFO) activity in rat liver and intestine by diets containing processed cabbage: correlation with cabbage levels of glucosinolates and glucosinolate hydrolysis products. Food and Chemical Toxicology, 25, 363–368.

    Article  CAS  Google Scholar 

  • Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56, 139–147.

    Article  CAS  Google Scholar 

  • Mithen, R. F., Dekker, M., Verkerk, R., Rabot, S., & Johnson, I. T. (2000). The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture, 80(7), 967–984.

    Article  CAS  Google Scholar 

  • Moreno, D. A., López-Berenguer, C., & García-Viguera, C. (2007). Effects of stir-fry cooking with different edible oils on the phytochemical composition of broccoli. Journal of Food Science, 72(1), S064–S068.

    Article  CAS  Google Scholar 

  • Murcia, M. A., Lopez-Ayerra, B., Martinez-Tomé, M., Vera, A. M., & Garcia-Carmona, F. (2000). Evolution of ascorbic acid and peroxidase during industrial processing of broccoli. Journal of the Science of Food and Agriculture, 80, 1882–1886.

    Article  CAS  Google Scholar 

  • Nath, A., Bagchi, B., Misra, L. K., & Bidyut, C. D. (2011). Changes in post-harvest phytochemical qualities of broccoli florets during ambient and refrigerated storage. Food Chemistry, 127, 1510–1514.

    Article  CAS  Google Scholar 

  • Noichinda, S., Bodhipadma, K., Mahamontri, C., Narongruk, T., & Ketsa, S. (2007). Light during storage prevents loss of ascorbic acid, and increases glucose and fructose levels in Chinese kale (Brassica oleracea var. alboglabra). Postharvest Biology and Technology, 44, 312–315.

    Article  CAS  Google Scholar 

  • Nugrahedi, P. Y., Verkerk, R., Widianarko, B., & Dekker, M. (2015). A mechanism perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Critical Reviews in Food Science and Nutrition, 55, 823–838.

    Article  CAS  Google Scholar 

  • Oerlemans, K., Barret, D. M., Suades, C. B., Verkerk, R., & Dekker, M. (2006). Thermal degradation of glucosinolates in red cabbage. Food Chemistry, 95, 19–29.

    Article  CAS  Google Scholar 

  • Oliviero, T., Verkerk, R., & Dekker, M. (2012). Effect of water content and temperature on glucosinolate degradation kinetics in broccoli (Brassica oleracea var. italica). Food Chemistry, 132, 2037–2045.

    Article  CAS  Google Scholar 

  • Oliviero, T. R., Verkerk, R., & Dekker, M. (2013). A research approach for quality based design of health foods: dried broccoli as a case study. Trends in Food Science and Tecnhology, 30, 178–184.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Odriozola-Serrano, I. and Martín-Belloso, O. (2012). The effects of non-thermal technologies on phytochemicals—a global perspective of their role in nutrition and health, Venketeshwer Rao (Ed.), InTech, Rijeka, ISBN: 978-953-51-0296-0, Available from: http://www.intechopen.com/books/phytochemicals-a-global-perspective-of-their-role-in-nutrition-andhealth/the-effects-of-non-thermal-technologies-on-phytochemicals.

  • Opietnik, M., Nabihah Binti Syed Jaafar, S., Becker, M., Bohmdorfer, S., Hofinger, A., & Rosenau, T. (2012). Ascorbigen—occurrence, synthesis, and analytics. Mini-Reviews in Organic Chemistry, 9(4), 411–417.

    Article  CAS  Google Scholar 

  • Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94(6), 1057–1070.

    Article  CAS  Google Scholar 

  • Patras, A., Tiwari, B. K., & Brunton, N. P. (2011). Influence of blanching and low temperature preservation strategies on antioxidant activity and photochemical content of carrots, green beans and broccoli. LWT - Food Science and Tecnhology, 44, 299–306.

    Article  CAS  Google Scholar 

  • Pellegrini, N., Miglio, C., Del Rio, D., Salvatore, S., Serafini, M., & Brighenti, F. (2009). Effect of domestic cooking methods on the total antioxidant capacity of vegetables. International Journal of Food Science and Nutrition, 60(S2), 12–22.

    Article  CAS  Google Scholar 

  • Pellegrini, N., Chiavaro, E., Gardana, C., Mazzeo, T., Contino, D., Gallo, M., Riso, P., Fogliano, V., & Porrini, M. (2010). Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. Journal of Agricultural and Food Chemistry, 58, 4310–4321.

    Article  CAS  Google Scholar 

  • Podhradský, D., Drobnica, Ľ., & Kristian, P. (1979). Reactions of cysteine, its derivatives, glutathione, coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia, 35(2), 154–155.

    Article  Google Scholar 

  • Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT - Food Science and Technology, 40(1), 1–11.

  • Porter, Y. (2012). Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions. Bioscience Horizon, 5, hzs004.

    CAS  Google Scholar 

  • Preobrazhenskaya, M. N., Korolev, A. M., Lazhko, E. I., Aleksandrova, L. G., Bergman, J., & Lindström, J. O. (1993). Ascorbigen as a precursor of 5, 11-dihydroindolo [3, 2-b] carbazole. Food Chemistry, 48(1), 57–62.

    Article  CAS  Google Scholar 

  • Puupponen-Pimia, R., Hakkinen, S. T., Aarni, M., Suortti, T., Lampi, A.-M., Eurola, M., Piironen, V., Nuutila, A. M., & Oksman-Caldentey, K.-M. (2003). Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. Journal of the Science of Food and Agriculture, 83, 1389–1402.

    Article  CAS  Google Scholar 

  • Reis, L. C. R., Oliveira, V. R., Hagen, M. E. K., Jablonski, A., Flôres, S. H., & Rios, A. O. (2015). Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chemistry, 172, 770–777.

    Article  CAS  Google Scholar 

  • Reznikova, M. I., Korolev, A. M., Bodyagin, D. A., & Preobrazhenskaya, M. N. (2000). Transformations of ascorbigen in vivo into ascorbigen acid and 1-deoxy-1-(indol-3-yl)ketoses. Food Chemistry, 71, 469–474.

    Article  CAS  Google Scholar 

  • Rodrigues, A. S., & Rosa, E. A. S. (1999). Effect of post-harvest treatments on the level of glucosinolates in broccoli. Journal of the Science of Food and Agriculture, 79(7), 1028–1032.

    Article  CAS  Google Scholar 

  • Rosa, E. A. S., & Heaney, R. K. (1993). The effect of cooking and processing on the glucosinolates content—studies on 4 varieties of Portuguese cabbage and hybrid white cabbage. Journal of the Science of Food and Agriculture, 62, 259–265.

    Article  CAS  Google Scholar 

  • Ruiz-Rodriguez, A., Marín, F. R., Ocaña, A., & Soler-Rivas, C. (2008). Effect of domestic processing on bioactive compounds. Phytochemistry Reviews, 7, 345–384.

    Article  CAS  Google Scholar 

  • Rungapamestry, V., Duncan, A. J., Fuller, Z., & Ratcliffe, B. (2008). Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. European Food Research and Technology, 227, 37–44.

    Article  CAS  Google Scholar 

  • Saguy, I. S., & Dana, D. (2003). Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56(2), 143–152.

    Article  Google Scholar 

  • Saguy, I. S., Ufheil, G., & Livings, S. (1998). Oil uptake in deep fat frying––review. Oleagineux Corps Gras Lipides, 5(1), 30–35.

    Google Scholar 

  • Sarvan, I., Kramer, E., Bouwmeester, H., Dekker, M., & Verkerk, R. (2017). Sulforaphane formation and bioaccessibility are more affected by steaming time than meal composition during in vitro digestion of broccoli. Food Chemistry, 214, 580–586.

    Article  CAS  Google Scholar 

  • Schreiner, M., & Huyskens-Keil, S. (2006). Phytochemicals in fruit and vegetables: health promotion and postharvest elicitors. Critical Reviews in Plant Sciences, 25, 267–278.

    Article  CAS  Google Scholar 

  • Schreiner, M. C., Peters, P. J., & Krumbein, A. B. (2006). Glucosinolates in mixed-packaged mini broccoli and mini cauliflower under modified atmosphere. Journal of Agricultural and Food Chemistry, 54(6), 2218–2222.

    Article  CAS  Google Scholar 

  • Schreiner, M., Mewis, I., Huyskens-Keil, S., Jansen, M. A. K., Zrenner, R., Winkler, J. B., O’Brien, N., & Krumbein, A. (2012). UV-B-induced secondary plant metabolites—potential benefits for plant and human health. Critical Reviews in Plant Sciences, 31, 229–240.

    Article  CAS  Google Scholar 

  • Searle, L. M., Chamberlain, K., & Butcher, D. N. (1984). Preliminary studies on the effects of copper, iron, manganese ions on the degradation of 3-indolyl methyl-glucosinolate (a constituent of Brassica spp.) by myrosinase. Journal of the Science of Food and Agriculture, 35, 745–748.

    Article  CAS  Google Scholar 

  • Sepkovic, D. W., Bradlow, H. L., Michnovicz, J., Murtezani, S., Levy, I., & Osborne, M. P. (1994). Catechol estrogen production in rat microsomes after treatment with indole-3-carbinol, scorbigen, or beta-naphthoflavone: a comparison of stable isotope dilution gas chromatography-mass spectrometry and radiometric methods. Steroids, 59, 318–323.

    Article  CAS  Google Scholar 

  • Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., & Talalay, P. (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiology, Biomarkers and Prevention, 10, 501–508.

    CAS  Google Scholar 

  • Sikora, E., Cieslik, E., Leszczynska, T., Filipiak-Florkiewicz, A., & Pisulewski, P. M. (2008). The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chemistry, 107, 55–59.

    Article  CAS  Google Scholar 

  • Singh, J., Upadhyay, A. K., Prasad, K., Bahadur, A., & Rai, M. (2007). Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. Journal of Food Composition and Analysis, 20(2), 106–112.

    Article  CAS  Google Scholar 

  • Sønderby, I. E., Geu-Flores, F., & Halkier, B. A. (2010). Biosynthesis of glucosinolates—gene discovery and beyond. Trends in Plant Science, 15(5), 283–290.

    Article  CAS  Google Scholar 

  • Sones, K., Heaney, R. K., & Fenwick, G. R. (1984). An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK. Journal of the Science of Food and Agriculture, 35, 712–719.

    Article  CAS  Google Scholar 

  • Song, L., & Thornalley, P. J. (2007). Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology, 45, 216–224.

    Article  CAS  Google Scholar 

  • Sosińska, E., & Obiedziński, M. W. (2011). Effect of processing on the content of glucobrassicin and its degradation products in broccoli and cauliflower. Food Control, 22(8), 1348–1356.

    Article  CAS  Google Scholar 

  • Torres, D.P.M. (2009). Produção de refeições e alterações nutricionais nos alimentos. Revista SPCN.

  • Traka, M., & Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. Phytochemistry Reviews, 8, 269–282.

    Article  CAS  Google Scholar 

  • Turkmen, N., Sari, F., & Veglioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93, 713–718.

    Article  CAS  Google Scholar 

  • Turrini, A., Saba, A., Perrone, D., Cialda, E., & D’Amicis, A. (2001). Food consumption patterns in Italy: the INNCA study 1994_1996. European Journal of Clinical Nutrition, 55, 571–588.

    Article  CAS  Google Scholar 

  • USDA (United States Department of Agriculture) (2010). USDA National nutrient database for standard reference. Available from: http: //www.nal.usda.gov/fnic/foodcomp/.

  • Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2002). Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. European Food Research and Technology, 215, 310–316.

    Article  CAS  Google Scholar 

  • Vallejo, F., García-Viguera, C., & Tomás-Barberán, F. A. (2003a). Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development. Journal of Agricultural and Food Chemistry, 51, 3776–3782.

    Article  CAS  Google Scholar 

  • Vallejo, F., Tomás-Barberán, F., & García-Viguera, C. (2003b). Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. Journal of Agricultural and Food Chemistry, 51(10), 3029–3034.

    Article  CAS  Google Scholar 

  • Van Dam, N. M., Tytgat, T. O. G., & Kirkegaard, J. A. (2009). Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochemistry Reviews, 8, 171–186.

    Article  CAS  Google Scholar 

  • Vanderslice, J. T., Higgs, D. J., Hayes, J. M., & Block, G. (1990). Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. Journal of Food Composition and Analysis, 3(2), 105–118.

    Article  CAS  Google Scholar 

  • Vásquez-Caicedo, A. L., Schilling, S., Carle, R., & Neidhart, S. (2007). Impact of packaging and storage conditions on colour and beta-carotene retention of pasteurised mango puree. European Food Research and Technology, 224, 581–590.

    Article  CAS  Google Scholar 

  • Vega-Gálvez, A., Di Scalab, K., Rodrígueza, K., Lemus-Mondacaa, R., Miranda, M., López, J., & Perez-Wona, M. (2009). Effect of air-drying temperature on physicochemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647–653.

    Article  CAS  Google Scholar 

  • Verkerk, R., Knol, J. J., & Dekker, M. (2010). The effect of steaming on the glucosinolate content in broccoli. Acta Horticulturae, 867, 37–45.

    Article  CAS  Google Scholar 

  • Viander, B., Maki, M., & Palva, A. (2003). Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiology, 20, 391–395.

    Article  CAS  Google Scholar 

  • Virtanen, A. I. (1965). Studies on organic sulphur compounds and other labile substances in plants. Phytochemistry, 4, 207–228.

    Article  CAS  Google Scholar 

  • Volden, J., Borge, G. I. A., Hansen, M., Wicklund, T., & Bengtsson, G. B. (2009). Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant-related parameters in cauliflower (Brassica oleracea L. ssp. botrytis). LWT - Food Science and Technology, 42(1), 63–73.

    Article  CAS  Google Scholar 

  • Wachtel-Galor, S., Wong, K. W., & Benzie, I. F. F. (2008). The effect of cooking on Brassica vegetables. Food Chemistry, 110, 706–110.

    Article  CAS  Google Scholar 

  • Wagner, A. E., & Rimbach, G. (2009). Ascorbigen: chemistry, occurrence, and biologic properties. Clinics in Dermatology, 27(2), 217–224.

    Article  Google Scholar 

  • Wang, Y. X., & Frei, M. (2011). Stressed food—the impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 141, 271–286.

    Article  Google Scholar 

  • Williams, D. J., Edwards, D., Hamernig, I., Jian, L., James, A. P., Johnson, S. K., & Tapsell, L. C. (2013). Vegetables containing phytochemicals with potential anti-obesity properties: a review. Food Research International, 52, 323–333.

    Article  CAS  Google Scholar 

  • Xu, F., Zheng, Y., Yang, Z., Cao, S., Shao, X., & Wang, H. (2014). Domestic cooking methods affect the nutritional quality of red cabbage. Food Chemistry, 161, 162–167.

    Article  CAS  Google Scholar 

  • Yanaka, A., Fahey, J. W., Fukumoto, A., Nakayama, M., Inoue, S., Zhang, S., Tauchi, M., Suzuki, H., Hyodo, I., & Yamamoto, M. (2009). Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate in Helicobacter pylori-infected mince and humans. Cancer Prevention Research, 2(4), 353–360.

    Article  CAS  Google Scholar 

  • Yeh, C. T., & Yen, G. C. (2009). Chemopreventive functions of sulforaphane: a potent inducer of antioxidant enzymes and apoptosis. Journal of Functional Foods, 1, 23–32.

    Article  CAS  Google Scholar 

  • Yuan, G. F., Sun, B., Yuan, J., & Wang, Q. M. (2009). Effects of different cooking methods on health-promoting compounds of broccoli. Journal of Zhejiang University Science B, 10(8), 580–588.

    Article  Google Scholar 

  • Zanoni, B., Peri, C., Nani, R., & Lavelli, V. (1998). Oxidative heat damage of tomato halves as affected by drying. Food Research International, 31(5), 395–401.

    Article  Google Scholar 

  • Zhan, L. J., Hu, J. Q., Li, Y., & Pang, L. Y. (2012). Combination of light exposure and low temperature in preserving quality and extending shelf-life of fresh-cut broccoli (Brassica oleracea L.) Postharvest Biology and Technology, 72, 76–81.

    Article  CAS  Google Scholar 

  • Zhang, D., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88, 503–509.

    Article  CAS  Google Scholar 

  • Zhen-xin, G., Qiang-hui, G., & Yian-juan, G. (2012). Factors influencing glucoraphanin and sulforaphane formation in Brassica plants: a review. Journal of Integrative Agriculture, 11, 1804–1816.

    Article  CAS  Google Scholar 

  • Zhong, X., Dolan, K. D., & Almenar, E. (2015). Effect of steamable bag microwaving versus traditional cooking methods on nutritional preservation and physical properties of frozen vegetables: a case of study on broccoli (Brassica oleracea). Innovative Food Science & Emerging Technologies, 30, 116–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to their families and friends for all the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Raposo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, A., Carrascosa, C. & Raposo, A. Influence of Different Cooking Methods on the Concentration of Glucosinolates and Vitamin C in Broccoli. Food Bioprocess Technol 10, 1387–1411 (2017). https://doi.org/10.1007/s11947-017-1930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1930-3

Keywords

Navigation