Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea

Abstract

The aim of this study was to develop, characterize and evaluate in vitro the efficacy of active films, based on an inclusion complex formed by β-cyclodextrin, 2-nonanone and two polymer matrices (polylactic acid and low density polyethylene). The different films were characterized by scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), themogravimetric analysis (TGA), optical properties and antimicrobial activity against B. cinerea. The results showed important differences in the parameters evaluated where the level of agglomerates of additives was a key to explain these changes. Finally, microbiological analysis showed high effectiveness in reducing the Botrytis cinerea growth. The active films developed in this study were able to inhibit the growth of phytopathogenic fungus B. cinerea at different experimental conditions. The studied films have potential use for packaging fresh fruit susceptible to biological attack by this fungus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abarca, R., Rodríguez, F., Guarda, A., Galotto, M. J., & Bruna, J. (2016). Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chemistry, 196, 968–975.

    CAS  Article  Google Scholar 

  2. Aguilar-González, A. E., Palau, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mould (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 32, 181–185.

    Article  Google Scholar 

  3. Almenar, E. (2005). Active packaging of wild fruit. Thesis for the degree of Doctor. University of Valencia.

  4. Almenar, E., Del Valle, V., Catala, R., & Gavara, R. (2007a). Active package for wild strawberry fruit (Fragaria vesca L.) Journal of Agricultural and Food Chemistry, 55(6), 2240–2245.

    CAS  Article  Google Scholar 

  5. Almenar, E., Auras, R., Rubino, M., & Harte, B. (2007b). A new technique to prevent the main post harvest diseases in berries during storage: inclusion complexes β-cyclodextrin-hexanal. International Journal of Food Microbiology, 118, 164–172.

    CAS  Article  Google Scholar 

  6. Almenar, E., Auras, R., Wharton, P., Rubino, M., & Harte, B. (2007c). Release of acetaldehyde from β-cyclodextrins inhibits postharvest decay fungi in vitro. Journal of Agricultural and Food Chemistry, 55(17), 7205–7212.

    CAS  Article  Google Scholar 

  7. Almenar, E., Catalá, R., Hernández-Muñoz, P., & Gavara, R. (2009). Optimization of an active package for wild strawberries based on the release of 2-nonanone. LWT- Food Science and Technology, 42(2), 587–593.

    CAS  Article  Google Scholar 

  8. Arruda, L., Magaton, M., Bretas, R., & Ueki, M. (2015). Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing, 43, 27–37.

    CAS  Article  Google Scholar 

  9. Astray, G., Gonzalez-Barreiro, C., Mejuto, J. C., Rial-Otero, R., & Simal-Gándara, J. (2009). A review on the use of cyclodextrins in foods. Food Hydrocolloids, 23(7), 1631–1640.

    CAS  Article  Google Scholar 

  10. Ayala-Zavala, J. F., Soto-Valdez, H., González-León, A., Álvarez-Parrilla, E., Martín-Belloso, O., & González-Aguilar, G. A. (2008). Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 60(3), 359–368.

    CAS  Article  Google Scholar 

  11. Aytac, Z., Dogan, S. Y., Tekinay, T., & Uyar, T. (2014). Release and antibacterial activity of allyl isothiocyanate/−cyclodextrin complex encapsulated in electrospun nanofibers. Colloids and Surfaces B: Biointerfaces, 120, 125–131.

    CAS  Article  Google Scholar 

  12. Bruna, J., Peñaloza, A., Guarda, A., Rodríguez, F., & Galotto, M. (2012). Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Applied Clay Science, 58, 79–87.

    CAS  Article  Google Scholar 

  13. Cabral-Marques, H. M. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragance Journal, 25(5), 313–326.

    CAS  Article  Google Scholar 

  14. Carrasco, F., Pages, P., Gómes-Pérez, J., Santana, O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical. Polymers Degradation and Stability, 95, 116–125.

    CAS  Article  Google Scholar 

  15. Chang, M. (2015). Mechanical properties and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. Journal of Industrial and Engineering Chemistry, 27, 96–101.

    CAS  Article  Google Scholar 

  16. Chen, H., Xiao, X., Wang, J., Wu, L., Zheng, Z., & Yu, Z. (2008). Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters, 30(5), 919–923.

    Article  Google Scholar 

  17. Chiang, M., Chu, M., & Wu, T. (2011). Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly (l-lactide) nanocomposites. Polymer Degradation and Stability, 96, 60–66.

    CAS  Article  Google Scholar 

  18. Cifuentes, T., Cayupi, J., Celi-Barros, C., Zapata-Torres, G., Ballesteros, R., Ballesteros-Garrido, R., Abarca, B., & Jullian, C. (2016). Spectroscopic studies of the interaction of 3-(2-thienyl)-[1,2,3] triazolo[1,5-a]pyridine with 2,6-dimethyl-β-cyclodextrin and ctDNA. Organic & Biomolecular Chemistry, 14, 9760–9767.

    CAS  Article  Google Scholar 

  19. Gong, L., Li, T., Chen, F., Duan, X., Yuan, Y., Zhang, D., & Jiang, Y. (2016). An inclusion complex of eugenol into β-cyclodextrin: preparation, and physicochemical and antifungal characterization. Food Chemistry, 196, 324–330.

    CAS  Article  Google Scholar 

  20. Gordobil, O., Egués, I., Llano-Ponte, R., & Labidi, J. (2014). Physicochemical properties of PLA lignin blens. Polymer Degradation and Stability, 108, 330–338.

    CAS  Article  Google Scholar 

  21. Hapiot, F., Tilloy, S., & Monflier, E. (2006). Cyclodextrins as supramolecular hosts for organometallic complexes. Chemical Reviews, 106(3), 767–781.

    CAS  Article  Google Scholar 

  22. Hill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86–93.

    CAS  Article  Google Scholar 

  23. Hoogerwerf, S. W., Kets, E. P. W., & Dijksterhuis, J. (2002). High-oxygen and high-carbon dioxide containing atmospheres inhibit growth of food associated moulds. Letters in Applied Microbiology, 35(5), 419–422.

    CAS  Article  Google Scholar 

  24. Jeong, S., Kim, D., & Seo, J. (2015). Preparation and antimicrobial properties of LDPE composite films melt-blended with polymerized urushiol powders (YPUOH) for packaging applications. Progress in Organic Coatings, 85, 76–83.

    CAS  Article  Google Scholar 

  25. Joo, M., Auras, R., & Almenar, L. (2011). Preparation and characterization of blends made of poly(l-acid) and β-cyclodextrin: improvement of the blend properties by using a masterbatch. Carbohydrate Polymers, 86, 1022–1030.

    CAS  Article  Google Scholar 

  26. Joo, M., Merkel, C., Auras, R., & Almenar, E. (2012). Development and characterization of antimicrobial poly (l-lactid acid) containing trans-2-hexenal trapped in cyclodextrins. International Journal of Food Microbiology, 153, 297–305.

    CAS  Article  Google Scholar 

  27. Karathanos, V. T., Mourtzinos, I., Yannakopoulou, K., & Andrikopoulus, N. K. (2007). Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chemistry, 101(2), 652–658.

    CAS  Article  Google Scholar 

  28. Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. Journal of Agricultural and Food Chemistry, 61(34), 8156–8165.

    CAS  Article  Google Scholar 

  29. Kayaci, F., Sen, H. S., Durgun, E., & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Research International, 62, 424–431.

    CAS  Article  Google Scholar 

  30. Kfoury, M., Auezova, L., Greige-Gerges, H., & Fourmentin, S. (2015). Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydrate Polymers, 131, 264–272.

    CAS  Article  Google Scholar 

  31. Larsen, K. L. (2002). Large cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 43(1), 1–13.

    CAS  Article  Google Scholar 

  32. Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017–1025.

    CAS  Article  Google Scholar 

  33. López de Dicastillo, C., Gallur, M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. Journal of Membrane Science, 353(1–2), 184–191.

    Article  Google Scholar 

  34. López de Dicastillo, C., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2011). Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. Journal of Food Engineering, 104(3), 380–386.

    Article  Google Scholar 

  35. Martínez-Camacho, A. P., Cortéz-Rocha, M. O., Graciano-Verdugo, A. Z., Rodríguez-Félix, A., Castillo-Ortega, M. M., Burgos-Hernández, A., Ezquerra-Brauer, J. M., & Plascencia-Jatomea, M. (2013). Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydrate Polymers, 91, 666–674.

    Article  Google Scholar 

  36. Mazloom, A., Farhadyar, N., Azarakhshi, F., & Erfani, S. (2014). Nanoparticles of cyclodextrins and their applications in food technology. International Journal of Bio-Inorganic Hybrid Nanomaterials, 3, 5–10.

    Google Scholar 

  37. Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science and Emerging Technologies, 28, 73–80.

    CAS  Article  Google Scholar 

  38. Molinaro, S., Cruz, M., Boaro, M., Sensidoni, A., Lagazio, C., Morris, M., & Kerry, J. (2013). Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposites films. Journal of Food Engineering, 117, 113–123.

    CAS  Article  Google Scholar 

  39. Pérez, G. (2013). 2-Nonanone incorporating in films of linear low density polyethylene (LLDPE) by impregnation with supercritical CO2. Thesis to obtain the degree of food engineer. University of Santiago de Chile.

  40. Piercey, M. J., Mazzanti, G., Budge, S. M., Delaquis, P. J., Paulson, A. T., & Hansen, L. T. (2012). Antimicrobial activity of cyclodextrin entrapped allyl isothiocyanate in a model system and packaged fresh-cut onions. Food Microbiology, 30(1), 213–218.

    CAS  Article  Google Scholar 

  41. Plackett, D., Ghanbari-Siahkali, A., & Szente, L. (2007). Behavior of α- and β-cyclodextrin-encapsulated allyl isothiocyanate as slow-release additives in polylactide-co-polycaprolactone films. Journal of Applied Polymer Science, 105(5), 2850–2857.

    CAS  Article  Google Scholar 

  42. Poley, L., Siqueira, A., da Silva, M., & Vargas, H. (2004). Photothermal characterization of low density polyethylene food package. Polymers: Science and Technology, 14, 8–12.

    CAS  Google Scholar 

  43. Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. (2014). Development of novel nanobiocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149–155.

    CAS  Article  Google Scholar 

  44. Raouche, S., Mauricio-Iglesias, M., Peyron, S., Guillard, V., & Gontard, N. (2011). Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms’ growth in model food during storage. Innovative Food Science and Emerging Technologies, 12(4), 426–434.

    CAS  Article  Google Scholar 

  45. Rhim, J. (2013). Preparation and characterization of vacuum sputter silver coated PLA film. LWT-Food Science and Technology, 54, 477–484.

    CAS  Article  Google Scholar 

  46. Rodríguez, F., Coloma, A., Galotto, M., Guarda, A., & Bruna, J. (2012). Effect of organoclay content and molecular weigth on cellulose acetate nanocomposites properties. Polymer Degradation and Stability, 97, 1996–2001.

    Article  Google Scholar 

  47. Roy, P., Surekha, P., Rajagopal, C., & Chaoudhary, V. (2007). Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polymer Letters, 1, 208–216.

    CAS  Article  Google Scholar 

  48. Rudnik, E. (2008). Compostable polymer materials. Amsterdam: Elsevier.

    Google Scholar 

  49. Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT-Food Science and Technology, 60(1), 583–592.

    CAS  Article  Google Scholar 

  50. Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science and Emerging Technologies, 6(1), 115–123.

    CAS  Article  Google Scholar 

  51. Siro, I., Fenyvesi, E., Szente, L., Meulenaer, B. D., Devlieghere, F., Orgovanyi, J., Senyi, J., & Barta, J. (2006). Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: influence of complexation in beta-cyclodextrin. Food Additives and Contaminants, 23(8), 845–853.

    CAS  Article  Google Scholar 

  52. Soottitantawat, A., Takayama, K., Okamura, K., Muranaka, D., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Microencapsulation of l-menthol by spray drying and its release characteristics. Innovative Food Science and Emerging Technologies, 6(2), 163–170.

    CAS  Article  Google Scholar 

  53. Sunilkumar, M., Francis, T., Thachil, E., & Sujith. (2012). Low density polyethylene-chitosan composites: a study based on biodegradation. Chemical Engineering Journal, 204, 114–124.

    Article  Google Scholar 

  54. Suzuki, T., Ei, A., Takada, Y., Uehara, H., Yamanobe, T., & Takahashi, K. (2014). Modification of physical properties of poly (l-lactic acid) addition of methyl-β-cyclodextrin. Journal of Organic Chemistry, 10, 2997–3006.

    CAS  Google Scholar 

  55. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32, 235–245.

    Article  Google Scholar 

  56. Vaughn, S., Spencer, G., & Shasha, B. (1993). Volatile compounds from raspberry and strawberry fruit inhibit postharvest decay fungi. Journal of Food Science, 58, 793–796.

    CAS  Article  Google Scholar 

  57. Wen, P., Zhu, D.-H., Wu, H., Zong, M.-H., Jing, Y.-R., & Han, S.-Y. (2016a). Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 59, 366–376.

    CAS  Article  Google Scholar 

  58. Wen, P., Zhu, D.-H., Feng, K., Liu, F.-J., Lou, W.-Y., Li, N., Zong, M.-H., & Wu, H. (2016b). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/b-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996–1004.

    CAS  Article  Google Scholar 

  59. Xu, X., Li, Q., & Xiong, C. (2016). Crystallization behavior of poly(p-dioxanone) with cyclodextrin complex and nucleation mechanism discussion. RSC Advances, 6, 87169–87178.

    CAS  Article  Google Scholar 

  60. Zheng, Y., Haworth, I. S., Zuo, Z., Chow, M. S. S., & Chow, A. H. L. (2005). Physicochemical and structural characterization of quercetin-β-cyclodextrin complexes. Journal of Pharmaceutical Sciences, 94(5), 1079–1089.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Commission for Scientific and Technological Research, CONICYT, for its financial support from Center of Excellence with Basal Financing, Grant FB0807 (CEDENNA). Finally, the authors thank University of Santiago de Chile for its support (Grant USA1555).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Rodríguez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abarca, R.L., Rodríguez, F.J., Guarda, A. et al. Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea . Food Bioprocess Technol 10, 1585–1594 (2017). https://doi.org/10.1007/s11947-017-1926-z

Download citation

Keywords

  • Active packaging
  • 2-Nonanone
  • Botrytis cinerea
  • Antifungal activity
  • Inclusion complex