Skip to main content
Log in

Allyl Isothiocyanate Release from Edible Laminaria japonica for Time-Dependent Growth Deactivation of Foodborne Pathogens: I: Micrococcus luteus, Bacillus subtilis, and Listeria monocytogenes

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Allyl isothiocyanate (AITC) is a natural occurring essential oil found in plants of the family Brassicaceae. It is a well-recognized antimicrobial agent against a variety of foodborne pathogens. By vapor and solution deposition methods into raw and de-oiled Laminaria japonica, an edible, brown seaweed, we demonstrate AITC vapor phase activity against Listeria monocytogenes, Bacillus subtilis, and Micrococcus luteus. Colony deactivation occurred for each bacterium in the range 99.87–99.99% within 72 h. The kinetics of these activities was fitted to the Weibull and the Albert-Mafart population decay models. Combined standard uncertainty in the final model fitting is introduced for these models, along with bias factor analysis. The former indicates the degree of fit of the models while the latter indicated which of the models was the most appropriate. In general, the bias factor analysis of the models indicated that the Albert-Mafart model was the superior. The continued activity of AITC after contact with the seaweed delivery system suggested that the L. japonica + AITC system would represent a viable natural, edible system for food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AbdEl-Malek, A. M., Hassan Ali, S. F., Moemen, R. H., Mohamed, A., & Elsayh, K. I. (2010). Occurrence of Listeria species in meat, chicken products and human stools in Assiut City, Egypt with PCR use for rapid identification of Listeria monocytogenes. Veterinary World, 3(8), 353–359.

    Google Scholar 

  • Albert, I., & Mafart, P. (2005). A modified Weibull model for bacterial inactivation. International Journal of Food Microbiology, 100(1–3), 197–211.

    Article  CAS  Google Scholar 

  • Argyri, A. A., Lyra, E., Panagou, E. Z., & Tassou, C. C. (2013). Fate of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during storage of fermented green table olives in brine. Food Microbiology, 36(1), 1–6.

    Article  CAS  Google Scholar 

  • van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159.

    Article  Google Scholar 

  • Braun, P., Fehlhaber, K., Klug, C., & Kopp, K. (1999). Investigations into the activity of enzymes produced by spoilage-causing bacteria: a possible basis for improved shelf-life estimation. Food Microbiology, 16(5), 531–540.

    Article  CAS  Google Scholar 

  • Chan, A. C., Ager, D., & Thompson, I. P. (2013). Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. Journal of Microbiological Methods, 93(3), 209–217.

    Article  CAS  Google Scholar 

  • Charpentier, E., Gerbaud, G., Jacquet, C., Rocourt, J., & Courvalin, P. (1995). Incidence of antibiotic resistance in Listeria species. Journal of Infectious Diseases, 172(1), 277–281.

    Article  CAS  Google Scholar 

  • Close, D., Xu, T., Smartt, A., Rogers, A., Crossley, R., Price, S., Ripp, S., & Sayler, G. (2012). The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors, 12(1), 732.

    Article  CAS  Google Scholar 

  • Corradini, M.G., & Peleg, M. (2012). The kinetics of microbial inactivation by carbon dioxide under high pressure. In: Balaban MO & Ferrentino G (eds) Dense phase carbon dioxide: applications to food. p^pp 135–155. Blackwell.

  • Dai, R., & Lim, L. (2014). Release of allyl isothiocyanate from mustard seed meal powder. Journal of Food Science, 79(1), E47–E53.

    Article  CAS  Google Scholar 

  • Delaquis, P. J., & Sholberg, P. L. (1997). Antimicrobial activity of gaseous allyl isothiocyanate. Journal of Food Protection, 60(8), 943–947.

    Article  CAS  Google Scholar 

  • Gailunas, K., Matak, K., Boyer, R., Alvarado, C., Williams, R., & Sumner, S. (2008). Research note: use of UV light for the inactivation of Listeria monocytogenes and lactic acid bacteria species in recirculated chill brines. Journal of Food Protection, 71(3), 629–633.

    Article  CAS  Google Scholar 

  • Han, J.H. (2003). 4 - Antimicrobial food packaging A2 - Ahvenainen, Raija. In: Novel food packaging techniques. p^pp 50–70. Woodhead Publishing.

  • Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3.

  • Isshiki, K., Tokuoka, K., Mori, R., & Chiba, S. (1992). Preliminary examination of allyl isothiocyanate vapor for food preservation. Bioscience, Biotechnology, and Biochemistry, 56(9), 1476–1477.

    Article  CAS  Google Scholar 

  • Kim, W.-T., Chung, H., Shin, I.-S., Yam, K. L., & Chung, D. (2008). Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydrate Polymers, 71(4), 566–573.

    Article  CAS  Google Scholar 

  • Koukoutsis, J., Smith, J. P., Daifas, D. P., Yayalan, V., Cayouette, B., Ngadi, M., & El-Khoury, W. (2004). In vitro studies to control the growth of microorganisms of spoilage and safety concern in high-moisture, high-pH bakery products. Journal of Food Safety, 24(3), 211–230.

    Article  CAS  Google Scholar 

  • Langsrud, S., Sidhu, M. S., Heir, E., & Holck, A. L. (2003). Bacterial disinfectant resistance—a challenge for the food industry. International Biodeterioration & Biodegradation, 51(4), 283–290.

    Article  CAS  Google Scholar 

  • Lee, H., Zhou, B., Liang, W., Feng, H., & Martin, S. E. (2009). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93(3), 354–364.

    Article  Google Scholar 

  • Maier, R.M. (2000). Uninoculated Mueller Hinton broth media used as a blank. In: Bacterial growth: I. Review of basic microbiological concepts. p^pp. Elsevier.

  • Maresca, P., & Ferrari, G. (2017). Modeling of the microbial inactivation by high hydrostatic pressure freezing. Food Control, 73, Part A, 8–17.

    Article  Google Scholar 

  • Ortuño, C., Balaban, M., & Benedito, J. (2014). Modelling of the inactivation kinetics of Escherichia coli, Saccharomyces cerevisiae and pectin methylesterase in orange juice treated with ultrasonic-assisted supercritical carbon dioxide. The Journal of Supercritical Fluids, 90, 18–26.

    Article  Google Scholar 

  • Paes, J. L., Faroni, L. R. A., Martins, M. A., Dhingra, O. D., & Silva, T. A. (2011). Diffusion and sorption of allyl isothiocyanate in the process of fumigation of maize. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 296–301.

    Article  Google Scholar 

  • Park, S.-Y., & Pendleton, P. (2012). Mesoporous silica SBA-15 for natural antimicrobial delivery. Powder Technology, 223, 77–82.

    Article  CAS  Google Scholar 

  • Park, S.-Y., Barton, M., & Pendleton, P. (2012). Controlled release of allyl isothiocyanate for bacteria growth management. Food Control, 23, 478–484.

    Article  CAS  Google Scholar 

  • Pichler, J., Much, P., Kasper, S., Fretz, R., Auer, B., Kathan, J., Mann, M., Huhulescu, S., Ruppitsch, W., Pietzka, A., Silberbauer, K., Neumann, C., Gschiel, E., de Martin, A., Schuetz, A., Gindl, J., Neugschwandtner, E., & Allerberger, F. (2009). An outbreak of febrile gastroenteritis associated with jellied pork contaminated with Listeria monocytogenes. Wiener klinische Wochenschrift, 121(3–4), 149–156.

    Article  Google Scholar 

  • Rosenkvist, H., & Hansen, Å. (1995). Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production. International Journal of Food Microbiology, 26(3), 353–363.

    Article  CAS  Google Scholar 

  • Ross, T. (1966). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508.

    Google Scholar 

  • Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501–508.

    Article  CAS  Google Scholar 

  • Sekiyama, Y., Mizukami, Y., Takada, A., Oosono, M., & Nishimura, T. (1996). Effect of mustard extract vapor on fungi and spore-forming bacteria. Journal of Antibacterial and Antifungal Agents, 24(3), 171–178.

    CAS  Google Scholar 

  • Siahaan, E. A., Meillisa, A., Woo, H.-C., Lee, C.-W., Han, J.-H., & Chun, B.-S. (2013). Controlled release of allyl isothiocyanate from brown algae Laminaria japonica and mesoporous silica MCM-41 for inhibiting food-borne bacteria. Food Science and Biotechnology, 22(1), 19–24.

    Article  CAS  Google Scholar 

  • Siahaan, E. A., Pendleton, P., Woo, H.-C., & Chun, B.-S. (2014). Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria. Food Chemistry, 152, 11–17.

    Article  CAS  Google Scholar 

  • Smith-Palmer, A., Stewart, J., & Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26(2), 118–122.

    Article  CAS  Google Scholar 

  • Stepanović, S., Ćirković, I., & Ranin, L. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 38(5), 428–432.

    Article  Google Scholar 

  • Taylor, J. R. (1982). An introduction to error analysis: the study of uncertainties in physical measurements. New York: University Science Books.

    Google Scholar 

  • Taylor, B.N., & Kuyatt, C.E. (1997). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. In. p^pp 1–120. National Institute of Standards and Technology, US Government, Washington, DC.

  • Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., & Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987–6000.

    Article  CAS  Google Scholar 

  • Ulate-Rodríguez, J., Schafer, H. W., Zottola, E. A., & Davidson, P. M. (1997). Inhibition of Listeria monocytogenes, Escherichia coli O157:H7, and Micrococcus luteus by linear Furanocoumarins in a model food system. Journal of Food Protection, 60(9), 1050–1054.

    Article  Google Scholar 

  • Ward, S. M., Delaquis, P. J., Holley, R. A., & Mazza, G. (1998). Inhibition of spoilage and pathogenic bacteria on agar and pre-cooked roast beef by volatile horseradish distillates. Food Research International, 31(1), 19–26.

    Article  Google Scholar 

Download references

Acknowledgements

RAEl-F thanks the Egyptian Mission Office for the provision of financial support throughout this work. The authors thank Prof. B.S. Chun (Dept. Food Science and Technology, Pukyong National University, Busan, Korea) for the preparation and supply of de-oiled and raw samples of L. japonica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Pendleton.

Additional information

Research Highlights

• Vapor phase AITC controllably released from Laminaria japonica

• Rapid burst developed lethal dose against selected bacteria.

• Gram-positive bacteria deactivation followed Albert-Mafart population decay.

L. japonica + AITC = food compatible system against foodborne bacteria

Electronic Supplementary Material

ESM 1

(DOCX 1251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fayoumy, R.A., Pendleton, P., El-Fallal, A.A. et al. Allyl Isothiocyanate Release from Edible Laminaria japonica for Time-Dependent Growth Deactivation of Foodborne Pathogens: I: Micrococcus luteus, Bacillus subtilis, and Listeria monocytogenes . Food Bioprocess Technol 10, 1562–1573 (2017). https://doi.org/10.1007/s11947-017-1925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1925-0

Keywords

Navigation