Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1367–1373 | Cite as

Musts with Increased Lignan Content Through Addition of Lignan Extracts

  • Josef Balík
  • Pavel Híc
  • Jana Kulichová
  • Pavla Novotná
  • Jan Tříska
  • Naděžda Vrchotová
  • Jan Strohalm
  • Danuše Lefnerová
  • Milan Houška
Original Paper
  • 166 Downloads

Abstract

Red and white grape musts were enriched with 7-hydroxymatairesinol (HMR), which is the main lignan contained in spruce knots. Lignan enrichment was achieved by adding a spruce knot ethanol extract. Enriched musts were stored for 12 months and during storage must samples were periodically analyzed for HMR and alpha-conidendrin content, antioxidant activity, total polyphenols, and anti-mutagenicity. The data were statistically evaluated in order to determine the influence of grape type, quantity of added lignan extracts, addition of sugar, method of preservation and storage time on the quantity of lignans added, antioxidant activity, total polyphenols, and anti-mutagenicity. Lignan content was significantly influenced by the addition of lignan extracts. After storage, lignan content had changed only moderately and the added lignans were stable in the stored musts. Total polyphenol content and antioxidant activity of grape musts were significantly increased by the type of must grape and by thermomaceration. Thermomacerated red musts exhibited higher anti-mutagenicity compared to thermomacerated white musts, independent of lignan addition.

Keywords

Enrichment of must Lignans (HMR, CONI) Antioxidant activity Total polyphenol content 

Notes

Acknowledgements

This research was supported by research projects QJ1210258 and RO0317 and financed by the Ministry of Agriculture of the Czech Republic and by grant no. LO1415 supported by the Ministry of Education, Youth, and Sports of CR under the National Programme for Sustainability I (NPU I).

References

  1. Adlercreutz, H. (2007). Lignans and human health. Critical Reviews in Clinical Laboratory Science, 44, 483–525.CrossRefGoogle Scholar
  2. Balík, J., Híc, P., Soural, I., Tománková, E., Houška, M., Strohalm, J., Tříska, J., Vrchotová, N., Moos, M., & Marešová, I. (2015). Must, wine or wine-based beverage with increased amount of natural lignans and process for preparing thereof, National Patent Application No. 305406. Prague: Industrial Property Office.Google Scholar
  3. Brusentsev, Y., & Eklund, P. (2015). Synthesis and applications of diphosphine ligands derived from the lignan hydroxymatairesinol. Catalysis Today, 241, 260–263.CrossRefGoogle Scholar
  4. Cretin, B. N., Sallembien, Q., Sindt, L., Daugey, N., Buffeteau, T., Waffo-Teguo, P., Dubourdieu, D., & Marchal, A. (2015). How stereochemistry influences the taste of wine: isolation, characterization and sensory evaluation of lyoniresinol stereoisomers. Analytica Chimica Acta, 888, 191–198.CrossRefGoogle Scholar
  5. Cretin, B. N., Dubourdieu, D., & Marchal, A. (2016). Development of a quantitation method to assay both lyoniresinol enantiomers in wines, spirits, and oak wood by liquid chromatography-high resolution mass spectrometry. Analytical Bioanalytical Chemistry, 408, 3789–3799.CrossRefGoogle Scholar
  6. Dinková-Kostková, A., Gang, D. R., Davin, L. B., Bedgar, D. L., Chu, A., & Lewis, N. G. (1996). (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to izoflavone reductase, The Journal of Biological Chemistry, 271, 29473–29482.Google Scholar
  7. Harmatha, J. (2005). Strukturní bohatství a biologický význam lignanů a jim příbuzných rostlinných fenylpropanoidů. Chemické Listy, 99, 622–632.Google Scholar
  8. Harmatha, J., & Dinan, L. (2003). Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochemistry Reviews, 2, 321–330.CrossRefGoogle Scholar
  9. Heinonen, S., Nurmi, T., Liukkonen, K., Poutanen, K., Wähälä, K., Deyama, T., Nishibe, S., & Adlercreutz, H. (2001). In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. Journal of Agriculture and Food Chemistry, 49, 3178–3186.CrossRefGoogle Scholar
  10. Holmbom, B., Eckerman, C., Eklund, P., Hemming, J., Nisula, L., Reunanen, M., Sjöholm, R., Sundberg, A., Sundberg, K., & Willför, S. (2003). Knots in trees—a new rich source of lignans. Phytochemistry Reviews, 2, 331–340.CrossRefGoogle Scholar
  11. Landete, J. (2012). Plant and mammalian lignans. A Review of source, intake, metabolism, intestinal bacteria and health, Food research international, 46, 410–424.Google Scholar
  12. Lindahl, G., Saarinen, N., Abrahamsson, A., & Dabrosin, C. (2011). Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Research, 71, 51–60.CrossRefGoogle Scholar
  13. Mazur, W., & Adlercreutz, H. (1998). Naturally occurring estrogens in food. Pure and Applied Chemistry, 70, 1759–1776.CrossRefGoogle Scholar
  14. Milder, I. E. J., Arts, I. C., van de Putte, B., Venema, D. P., & Hollman, P. C. (2005). Lignan contents of Dutch plant foods, a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition, 93, 393–402.CrossRefGoogle Scholar
  15. Novotná, P., Tříska, J., Híc, P., Balík, J., Vrchotová, N., Strohalm, J., & Houška, M. (2016). Cross-correlation of quality parameters of musts and wines enriched with lignans. Czech Journal of Food Sciences, 34, 24–31.CrossRefGoogle Scholar
  16. Nurmi, T., Heinonen, S., Mazur, W., Deyama, T., Nishibe, S., & Adlercreutz, H. (2003). Lignans in selected wines. Food Chemistry, 83, 303–309.CrossRefGoogle Scholar
  17. Peterson, J., et al. (2010). Dietary lignans, physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews, 68, 571–603.CrossRefGoogle Scholar
  18. Sicilia, T., Niemeyer, H. B., Honig, D. M., & Metzler, M. (2003). Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry, 51, 1181–1188.CrossRefGoogle Scholar
  19. Slanina, J. (2000). Biologická a farmakologická aktivita lignanů. Chemické listy, 94, 111–116.Google Scholar
  20. Smeds, A., Eklund, P., & Willför, S. (2012). Content, composition, and stereochemical characterization of lignans in berries and seeds. Food Chemistry, 134, 1991–1998.CrossRefGoogle Scholar
  21. Taskinen, A., Eklund, P., Sjohölm, R., & Hotokka, M. (2004). The molecular structure and some properties of hydroxymatairesinol. An ab initio study. Journal of Molecular Structure (THEOCHEM), 677, 113–124.CrossRefGoogle Scholar
  22. Tetens, I., Turrini, A., Tapanainen, H., Christensen, T., Lampe, J. W., Fagt, S., & Valsta, L. M. (2013). Dietary intake and main sources of plant lignans in five European countries. Food & Nutrition Research, 57, 1–10.CrossRefGoogle Scholar
  23. Thompson, L. U. (1998). Experimental studies on lignans and cancer. Baillière's Clinical Endocrinology and Metabolism, 12, 691–705.CrossRefGoogle Scholar
  24. Totušek, J., Tříska, J., Lefnerová, D., Strohalm, J., Vrchotová, N., Zendulka, O., Průchová, J., Chaloupková, J., Novotná, P., & Houška, M. (2011). Contents of sulforaphane and total isothiocyanates, antimutagenic activity, and inhibition of clastogenicity in pulp juices from cruciferous plants. Czech Journal of Food Sciences, 29, 548–556.Google Scholar
  25. Umezawa, T. (2003). Diversity in lignan biosynthesis. Phytochemistry Reviews, 2, 371–390.CrossRefGoogle Scholar
  26. Willför, S. M., Smeds, A. I., & Holmbom, B. R. (2006). Chromatographic analysis of lignans. Journal of Chromatography A, 1112, 64–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Josef Balík
    • 1
  • Pavel Híc
    • 1
  • Jana Kulichová
    • 1
  • Pavla Novotná
    • 2
  • Jan Tříska
    • 3
  • Naděžda Vrchotová
    • 3
  • Jan Strohalm
    • 2
  • Danuše Lefnerová
    • 4
  • Milan Houška
    • 2
  1. 1.Faculty of Horticulture Lednice, Department of Post-Harvest Technology of Horticultural ProductsMendel University BrnoLedniceCzech Republic
  2. 2.Food Research Institute Prague, Department of Food EngineeringPrague 10Czech Republic
  3. 3.Laboratory of Metabolomics and Isotopic Analyses, Global Change Research InstituteAcademy of Sciences of the Czech, RepublicČeské BudějoviceCzech Republic
  4. 4.Faculty of Medicine, Department of Public HealthMasaryk University BrnoBrnoCzech Republic

Personalised recommendations