Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1173–1191 | Cite as

Properties and Food Uses of Chestnut Flour and Starch

REVIEW

Abstract

This review summarised the compositional, thermal, and rheological properties and food applications of chestnut (Castanea spp.) flour systems. The compositional, structural, and physicochemical properties of chestnut starch, which is a major determinant for product quality, were also reviewed. Future research directions on how to better utilise chestnut flour and starch for food product developments were suggested. Chestnuts are important food items for many people around the world. The world production of chestnuts has kept increasing during the last decade. There has been growing interest to utilise chestnut flour for various food applications (e.g. gluten-free food products). The major component of chestnut is starch which amounts to over 50% of the dry weight of the fruit. Chestnut starch may as well have potential for food and non-food applications. Overall, this review provides a scientific basis to develop chestnuts as sustainable and cash crops.

Keywords

Castanea spp Bread Food rheology Physicochemical property Gluten-free Underutilised species 

References

  1. Alary, R., Buissonade, C., Joudrier, P., & Gautier, M. F. (2007). Detection and discrimination of cereal and leguminous species in chestnut flour by duplex PCR. European Food Research and Technology, 225, 427–434.CrossRefGoogle Scholar
  2. Aponte, M., Boscaino, F., Sorrentino, A., Coppola, R., Masi, P., & Romano, A. (2013). Volatile compounds and bacterial community dynamics of chestnut-flour-based sourdoughs. Food Chemistry, 141, 2394–2404.CrossRefGoogle Scholar
  3. Aponte, M., Boscaino, F., Sorrentino, A., Coppola, R., Masi, P., & Romano, A. (2014). Effects of fermentation and rye flour on microstructure and volatile compounds of chestnut flour based sourdoughs. LWT-Food Science & Technology, 58, 387–395.CrossRefGoogle Scholar
  4. Appelqvist, I. A., & Debet, M. R. (1997). Starch-biopolymer interactions—a review. Food Review International, 13, 163–224.CrossRefGoogle Scholar
  5. Bai, J. C., Fried, M., Corazza, G. R., Schuppan, D., Farthing, M., Catassi, C., Greco, L., Cohen, H., Ciacci, C., Eliakim, R., Fasano, A., González, A., Krabshuis, J. H., & LeMair, A. (2013). World gastroenterology organisation global guidelines on celiac disease. Journal of Clinical Gastroenterology, 47, 121–126.CrossRefGoogle Scholar
  6. Baldwin, P. M. (2001). Starch granule-associated proteins and polypeptides: a review. Starch/Stärke, 53, 475–503.CrossRefGoogle Scholar
  7. BeMiller, J. N. (2011). Pasting, paste, and gel properties of starch-hydrocolloid combinations. Carbohydrate Polymers, 86, 386–423.CrossRefGoogle Scholar
  8. BeMiller, J., & Whistler, R. (Eds.). (2009). Starch: chemistry and technology (third edition) (pp. 589–599). Cambridge: Academic Press.Google Scholar
  9. Bignardi, C., Cavazza, A., & Corradini, C. (2012). Determination of furosine in food products by capillary zone electrophoresis-tandem mass spectrometry. Electrophoresis, 33, 2382–2389.CrossRefGoogle Scholar
  10. Carvalho, C. W. P., & Mitchell, J. R. (2000). Effect of sugar on the extrusion of maize grits and wheat flour. International Journal of Food Science and Technology, 35, 569–576.CrossRefGoogle Scholar
  11. Chenlo, F., Moreira, R., Prieto, D. M., & Torres, M. D. (2011). Desorption isotherms and net isosteric heat of chestnut flour and starch. Food and Bioprocess Technology, 4, 1497–1504.CrossRefGoogle Scholar
  12. Cirlini, M., Dall’Asta, C., Silvanini, A., Beghè, D., Fabbri, A., Galaverna, G., & Ganino, T. (2012). Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chemistry, 134, 662–668.CrossRefGoogle Scholar
  13. Correia, P. R., & Beirão-da-Costa, M. L. (2010). Chestnut and acorn starch properties affected by isolation methods. Starch/Stärke, 62, 421–428.CrossRefGoogle Scholar
  14. Correia, P., & Beirão-da-Costa, M. L. (2012). Effect of drying temperatures on starch-related functional and thermal properties of chestnut flours. Food and Bioproducts Processing, 90, 284–294.CrossRefGoogle Scholar
  15. Correia, P., Cruz-Lopes, L., & Beirão-da-Costa, L. (2012a). Morphology and structure of chestnut starch isolated by alkali and enzymatic methods. Food Hydrocolloids, 28, 313–319.CrossRefGoogle Scholar
  16. Correia, P. R., Nunes, M. C., & Beirão-da-Costa, M. L. (2012b). The effect of starch isolation method on physical and functional properties of Portuguese nuts starches. I. Chestnuts (Castanea sativa Mill. var. Martainha and Longal) fruits. Food Hydrocolloids, 27, 256–263.CrossRefGoogle Scholar
  17. Cruz, B. R., Abraão, A. S., Lemos, A. M., & Nunes, F. M. (2013). Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill). Carbohydrate Polymers, 94, 594–602.CrossRefGoogle Scholar
  18. Dall’Asta, C., Cirlini, M., Morini, E., Rinaldi, M., Ganino, T., & Chiavaro, E. (2013). Effect of chestnut flour supplementation on physico-chemical properties and volatiles in bread making. LWT-Food Science & Technology, 53, 233–239.CrossRefGoogle Scholar
  19. De Vasconcelos, M. C. B. M., Bennett, R. N., Rosa, E. A. S., & Ferreira-Cardoso, J. V. (2010). Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products. Journal of the Science of Food and Agriculture, 90, 1578–1589.CrossRefGoogle Scholar
  20. Demiate, I. M., Oetterer, M., & Wosiacki, G. (2001). Characterization of chestnut (Castanea sativa, Mill) starch for industrial utilization. Brazilian Archives of Biology and Technology, 44, 69–78.CrossRefGoogle Scholar
  21. Demirkesen, I., Mert, B., Sumnu, G., & Sahin, S. (2010). Utilization of chestnut flour in gluten-free bread formulations. Journal of Food Engineering, 101, 329–336.CrossRefGoogle Scholar
  22. Demirkesen, I., Sumnu, G., Sahin, S., & Uysal, N. (2011). Optimisation of formulations and infrared–microwave combination baking conditions of chestnut–rice breads. International Journal of Food Science & Technology, 46, 1809–1815.CrossRefGoogle Scholar
  23. Demirkesen, I., Sumnu, G., & Sahin, S. (2013). Image analysis of gluten-free breads prepared with chestnut and rice flour and baked in different ovens. Food and Bioprocess Technology, 6, 1749–1758.CrossRefGoogle Scholar
  24. Demirkesen, I., Campanella, O. H., Sumnu, G., Sahin, S., & Hamaker, B. R. (2014). A study on staling characteristics of gluten-free breads prepared with chestnut and rice flours. Food and Bioprocess Technology, 7, 806–820.CrossRefGoogle Scholar
  25. Durazzo, A., Turfani, V., Azzini, E., Maiani, G., & Carcea, M. (2013). Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chemistry, 140, 666–671.CrossRefGoogle Scholar
  26. Eliasson, A. C. (Ed.). (2004). Starch in food—structure, function and applications. Cambridge: Woodhead Publishing Limited.Google Scholar
  27. FAOSTAT (Statistics Division of Food and Agriculture Organization of the United Nations). (2017). Available from: http://faostat3.fao.org/browse/Q/QC/E . Accessed on February 16 th , 2017.
  28. Frati, A., Landi, D., Marinelli, C., Gianni, G., Fontana, L., Migliorini, M., Pierucci, F., Garcia-Gil, M., & Meacci, E. (2014). Nutraceutical properties of chestnut flours: beneficial effects on skeletal muscle atrophy. Food & Function, 5, 2870–2882.CrossRefGoogle Scholar
  29. Gallagher, E., O’Brien, C. M., Scannell, A. G. M., & Arendt, E. K. (2003). Evaluation of sugar replacers in short dough biscuit production. Journal of Food Engineering, 56, 261–263.CrossRefGoogle Scholar
  30. Gray, J. A., & BeMiller, J. N. (2003). Bread staling: molecular basis and control. Comprehensive Reviews in Food Science and Food Safety, 2, 1–21.CrossRefGoogle Scholar
  31. Gunaratne, A., Ranaweera, S., & Corke, H. (2007). Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl beta-cyclodextrin. Carbohydrate Polymers, 70, 112–122.CrossRefGoogle Scholar
  32. Hu, N., Gu, X., Li, L., Ouyang, J., Wang, F., Wang, J., & Fan, Z. (2014). Synthesis and evaluation of microstructure of phosphorylated chestnut starch. Journal of Food Process Engineering, 37, 75–85.CrossRefGoogle Scholar
  33. Inkaya, A. N., Gocmen, D., Ozturk, S., & Koksel, H. (2009). Investigation on the functional properties of chestnut flours and their potential utilization in low-fat cookies. Food Science and Biotechnology, 18, 1404–1410.Google Scholar
  34. Jane, J. L. (1993). Mechanism of starch gelatinization in neutral salt-solutions. Starch/Stärke, 45, 161–166.CrossRefGoogle Scholar
  35. Korel, F., & Balaban, M. Ö. (2009). Chemical composition and health aspects of chestnut (Castanea spp.) In C. Alasalvar & F. Shahidi (Eds.), Tree nuts: composition, phytochemicals, and health effects. Boca Raton: CRC Press.Google Scholar
  36. Lee, J. W., Choi, H. W., Seo, D. H., Park, J. D., Kum, J. S., Kim, B. Y., & Baik, M. Y. (2015). Isolation and characterization of starches from chestnuts cultivated in three regions of Korea. Starch/Stärke, 67, 585–594.CrossRefGoogle Scholar
  37. Lehmann, U., & Robin, F. (2007). Slowly digestible starch—its structure and health implications: a review. Trends in Food Science & Technology, 18, 346–355.CrossRefGoogle Scholar
  38. Lelievre, J., & Liu, H. (1994). A review of thermal analysis studies of starch gelatinization. Thermochimica Acta, 246, 309–315.CrossRefGoogle Scholar
  39. Lemos, A. M., Abraão, A. S., Cruz, B. R., Morgado, M. L., Rebelo, M., & Nunes, F. M. (2015). Effect of granular characteristics on the viscoelastic and mechanical properties of native chestnut starch (Castanea sativa Mill). Food Hydrocolloids, 51, 305–317.CrossRefGoogle Scholar
  40. Li, G., & Zhu, F. (2017). Physicochemical properties of quinoa flour as affected by starch interactions. Food Chemistry, 221, 1560–1568.CrossRefGoogle Scholar
  41. Liu, C., Wang, S., Chang, X., & Wang, S. (2015). Structural and functional properties of starches from Chinese chestnuts. Food Hydrocolloids, 43, 568–576.CrossRefGoogle Scholar
  42. Matheson, N. K. (1990). A comparison of the structures of the fractions of normal and high amylose pea-seed starches prepared by precipitation with concanavalin A. Carbohydrate Research, 199, 195–205.CrossRefGoogle Scholar
  43. Melander, W., & Horváth, C. (1977). Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Archives of Biochemistry and Biophysics, 183, 200–215.CrossRefGoogle Scholar
  44. Mert, S., Sahin, S., & Sumnu, G. (2015). Development of gluten-free wafer sheet formulations. LWT-Food Science & Technology, 63, 1121–1127.CrossRefGoogle Scholar
  45. Monaco, R. D., Miele, N. A., Cavella, S., & Masi, P. (2010). New chestnut-based chips optimization: Effects of ingredients. LWT-Food Science & Technology, 43, 126–132.CrossRefGoogle Scholar
  46. Moreira, R., Chenlo, F., Torres, M. D., & Prieto, D. M. (2010a). Influence of the particle size on the rheological behaviour of chestnut flour doughs. Journal of Food Engineering, 100, 270–277.CrossRefGoogle Scholar
  47. Moreira, R., Chenlo, F., Torres, M. D., & Prieto, D. M. (2010b). Water adsorption and desorption isotherms of chestnut and wheat flours. Industrial Crops and Products, 32, 252–257.CrossRefGoogle Scholar
  48. Moreira, R., Chenlo, F., & Torres, M. D. (2011a). Effect of sodium chloride, sucrose and chestnut starch on rheological properties of chestnut flour doughs. Food Hydrocolloids, 25, 1041–1050.CrossRefGoogle Scholar
  49. Moreira, R., Chenlo, F., & Torres, M. D. (2011b). Rheology of commercial chestnut flour doughs incorporated with gelling agents. Food Hydrocolloids, 25, 1361–1371.CrossRefGoogle Scholar
  50. Moreira, R., Chenlo, F., & Torres, M. D. (2011c). Rheological properties of commercial chestnut flour doughs with different gums. International Journal of Food Science & Technology, 46, 2085–2095.CrossRefGoogle Scholar
  51. Moreira, R., Chenlo, F., Torres, M. D., Silva, C., Prieto, D. M., Sousa, A. M. M., Hilliou, L., & Gonçalves, M. P. (2011d). Drying kinetics of biofilms obtained from chestnut starch and carrageenan with and without glycerol. Drying Technology, 29, 1058–1065.CrossRefGoogle Scholar
  52. Moreira, R., Chenlo, F., Torres, M. D., & Glazer, J. (2012a). Rheological properties of gelatinized chestnut starch dispersions: Effect of concentration and temperature. Journal of Food Engineering, 112, 94–99.CrossRefGoogle Scholar
  53. Moreira, R., Chenlo, F., Torres, M. D., & Prieto, D. M. (2012b). Technological assessment of chestnut flour doughs regarding to doughs from other commercial flours and formulations. Food and Bioprocess Technology, 5, 2301–2310.CrossRefGoogle Scholar
  54. Moreira, R., Chenlo, F., & Torres, M. D. (2012c). Effect of shortenings on the rheology of gluten-free doughs: study of chestnut flour with chia flour, olive and sunflower oils. Journal of Texture Studies, 43, 375–383.CrossRefGoogle Scholar
  55. Moreira, R., Chenlo, F., & Torres, M. D. (2013a). Effect of chia (Sativa hispanica L.) and hydrocolloids on the rheology of gluten-free doughs based on chestnut flour. LWT-Food Science & Technology, 50, 160–166.CrossRefGoogle Scholar
  56. Moreira, R., Chenlo, F., & Torres, M. D. (2013b). Rheology of gluten-free doughs from blends of chestnut and rice flours. Food and Bioprocess Technology, 6, 1476–1485.CrossRefGoogle Scholar
  57. Moreira, R., Chenlo, F., Torres, M. D., & Rama, B. (2013c). Influence of the chestnuts drying temperature on the rheological properties of their doughs. Food and Bioproducts Processing, 91, 7–13.CrossRefGoogle Scholar
  58. Moreira, R., Chenlo, F., Torres, M. D., & Rama, B. (2014). Fine particle size chestnut flour doughs rheology: influence of additives. Journal of Food Engineering, 120, 94–99.CrossRefGoogle Scholar
  59. Moreira, R., Chenlo, F., & Arufe, S. (2015). Starch transitions of different gluten free flour doughs determined by dynamic thermal mechanical analysis and differential scanning calorimetry. Carbohydrate Polymers, 127, 160–167.CrossRefGoogle Scholar
  60. Norton, I. T., Spyropoulos, F., & Cox, P. (2011). Practical food rheology: an interpretive approach (1st ed.). Chichester: Wiley.CrossRefGoogle Scholar
  61. O’Shea, N., Arendt, E., & Gallagher, E. (2014). State of the art in gluten-free research. Journal of Food Science, 79, R1067–R1076.CrossRefGoogle Scholar
  62. Orczykowska, M., & Dziubiński, M. (2014). Characterization of chestnut starch paste structure using the rheological fractional model. Starch/Stärke, 66, 707–713.CrossRefGoogle Scholar
  63. Pejcz, E., Mularczyk, A., & Gil, Z. (2015). Technological characteristics of wheat and non-cereal flour blends and their applicability in bread making. Journal of Food and Nutrition Research, 54, 69–78.Google Scholar
  64. Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Stärke, 62, 389–420.CrossRefGoogle Scholar
  65. Pietri, A., Rastelli, S., Mulazzi, A., & Bertuzzi, T. (2012). Aflatoxins and ochratoxin A in dried chestnuts and chestnut flour produced in Italy. Food Control, 25, 601–606.CrossRefGoogle Scholar
  66. Pizzoferrato, L., Rotilio, G., & Paci, M. (1999). Modification of structure and digestibility of chestnut starch upon cooking: a solid state 13C CP MAS NMR and enzymatic degradation study. Journal of Agricultural and Food Chemistry, 47, 4060–4063.CrossRefGoogle Scholar
  67. Ribeiro, R. S., Pinho, M., Falcão-Cunha, L., & Freire, J. P. B. (2013). The use of chestnuts (Castanea sativa Mill.) as a source of resistant starch in the diet of the weaned piglet. Animal Feed Science and Technology, 182, 111–120.CrossRefGoogle Scholar
  68. Rinaldi, M., Paciulli, M., Dall’Asta, C., Cirlini, M., & Chiavaro, E. (2015). Short-term storage evaluation of quality and antioxidant capacity in chestnut–wheat bread. Journal of the Science of Food and Agriculture, 95, 59–65.CrossRefGoogle Scholar
  69. Sacchetti, G., Pinnavaia, G. G., Guidolin, E., & Dalla Rosa, M. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour-based snack-like products. Food Research International, 37, 527–534.CrossRefGoogle Scholar
  70. Silvanini, A., Dall’Asta, C., Morrone, L., Cirlini, M., Beghè, D., Fabbri, A., & Ganino, T. (2014). Altitude effects on fruit morphology and flour composition of two chestnut cultivars. Scientia Horticulturae, 176, 311–318.CrossRefGoogle Scholar
  71. Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21, 168–180.CrossRefGoogle Scholar
  72. Srichuwong, S., & Jane, J. L. (2007). Physicochemical properties of starch affected by molecular composition and structures: a review. Food Science and Biotechnology, 16, 663–674.Google Scholar
  73. Timilsena, Y. P., Adhikari, R., Kasapis, S., & Adhikari, B. (2016). Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydrate Polymers, 136, 128–136.CrossRefGoogle Scholar
  74. Torres, M. D., Moreira, R., Chenlo, F., & Morel, M. H. (2013a). Effect of water and guar gum content on thermal properties of chestnut flour and its starch. Food Hydrocolloids, 33, 192–198.CrossRefGoogle Scholar
  75. Torres, M. D., Raymundo, A., & Sousa, I. (2013b). Effect of sucrose, stevia and xylitol on rheological properties of gels from blends of chestnut and rice flours. Carbohydrate Polymers, 98, 249–256.CrossRefGoogle Scholar
  76. Torres, M. D., Fradinho, P., Raymundo, A., & Sousa, I. (2014a). Thermorheological and textural behaviour of gluten-free gels obtained from chestnut and rice flours. Food and Bioprocess Technology, 7, 1171–1182.CrossRefGoogle Scholar
  77. Torres, M. D., Raymundo, A., & Sousa, I. (2014b). Influence of Na+, K+ and Ca2+ on mechanical and structural properties of gels from chestnut and rice flours. Carbohydrate Polymer, 102, 30–37.CrossRefGoogle Scholar
  78. Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch/Stärke, 67, 55–68.CrossRefGoogle Scholar
  79. Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14, 568–585.CrossRefGoogle Scholar
  80. Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Starch blends and their physicochemical properties. Starch/Stärke, 67, 1–13.CrossRefGoogle Scholar
  81. Yang, B., Jiang, G., Prasad, K. N., Gu, C., & Jiang, Y. (2010). Crystalline, thermal and textural characteristics of starches isolated from chestnut (Castanea mollissima Bl.) seeds at different degrees of hardness. Food Chemistry, 119, 995–999.CrossRefGoogle Scholar
  82. Yildiz, O., & Dogan, I. S. (2014). Optimization of gluten-free cake prepared from chestnut flour and transglutaminase: response surface methodology approach. International Journal of Food Engineering, 10, 737–746.CrossRefGoogle Scholar
  83. Yu, S., Liu, J., Yang, Y., Ren, J., Zheng, X., & Kopparapu, N. K. (2016). Effects of amylose content on the physicochemical properties of Chinese chestnut starch. Starch/Stärke, 68, 112–118.Google Scholar
  84. Zhang, M., Chen, H., & Zhang, Y. (2011). Physicochemical, thermal, and pasting properties of Chinese chestnut (Castanea mollissima Bl.) starches as affected by different drying methods. Starch/Stärke, 63, 260–267.CrossRefGoogle Scholar
  85. Zhang, W., Chen, H., Wang, J., Wang, Y., Xing, L., & Zhang, H. (2014). Physicochemical properties of three starches derived from potato, chestnut, and yam as affected by freeze-thaw treatment. Starch/Stärke, 66, 353–360.CrossRefGoogle Scholar
  86. Zhu, F. (2015). Interactions between starch and phenolic compound. Trends in Food Science & Technology, 43, 129–143.CrossRefGoogle Scholar
  87. Zhu, F. (2016). Effect of processing on quality attributes of chestnut. Food and Bioprocess Technology, 9, 1429–1443.CrossRefGoogle Scholar
  88. Zhu, X. H., Guo, W. C., Wu, X. L., & Wang, S. J. (2012). Dielectric properties of chestnut flour relevant to drying with radio-frequency and microwave energy. Journal of Food Engineering, 113, 143–150.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations