Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1324–1336 | Cite as

A Study on Structure (Micro, Ultra, Nano), Mechanical, and Color Changes of Solanum lycopersicum L. (Cherry Tomato) Fruits Induced by Hydrogen Peroxide and Ultrasound

  • Joaquín Fava
  • Andrea Nieto
  • Karina Hodara
  • Stella Maris Alzamora
  • María Agueda Castro
Original Paper


Changes in the epidermis structure (micro, ultra, and nano), mechanical properties, and surface color of Solanum licopersicum L. fruits (cherry tomatoes) due to hydrogen peroxide (HP) and high-power ultrasound (US) treatments were examined. Both treatments induced small alterations in the epicuticular waxes, the cuticular membrane, and the epidermal and subepidermal cells. Plasmolysis of subepidermal cells, slight epicarp compression, and dense cellulose microfibrils pattern in the non cutinized cellulose layer were documented after US. Looser cellulose microfibrils pattern in the cutinized and non cutinized cellulose layer was detected after HP exposure. Main nanostructure alterations in the cellulose domain affected the morphology and size of cellulose aggregates and nanofractures of cellulose layer in treated fruits. US treatment decreased a*, b*, and chroma values by 10, 5, and 7% and increased L* and hue angle by 2.5 and 3%, respectively, as compared to raw fruits. These small but significant differences were attributed to the disruption of the wax layer; color became brighter, more vivid, and more orange. Treatments slightly affected puncture parameters; the rupture force decreased from 14.8 N to 14.1 N and 13.8 N; the penetration probe at the rupture point increased from 7.6 mm to 7.7 mm and 8.0 mm and the mechanical work decreased from 48.7 mJ to 48.3 mJ and 44.4 mJ in raw fruits and after HP and US exposure, respectively. The mechanical response could be partially explained by the alterations in the micro, ultra, and nanostructure of the tissues. The low impact of US and HP treatments on mechanical and color characteristics would indicate their potential for cherry tomatoes decontamination.


Cherry tomatoes Epidermis structure Mechanical properties Color Hydrogen peroxide Ultrasound 



The authors acknowledge the valuable AFM technical assistance of Silvio Ludueña from CMA-FCEyN-UBA, and the financial support from University of Buenos Aires, CONICET, and ANPCyT of Argentina and from BID.


  1. Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering. 2 nd Ed (chapter 6). Gaithersburg: An Aspen Publication.Google Scholar
  2. Allende, A., Tomás-Barberán, F. A., & Gil, M. I. (2006). Minimal processing for healthy traditional foods. Trends in Food Science and Technology, 17, 513–519.CrossRefGoogle Scholar
  3. Alzamora, S. M., Castro, M. A., Nieto, A. B., Vidales, S. L., & Salvatori, D. M. (2000). The role of tissue microstructure in the textural characteristics of minimally processed fruits. In S. M. Alzamora, M. S. Tapia, & A. López-Malo (Eds.), Minimally processed fruits and vegetables (pp. 153–171). Gaithersburg: Aspen Publishers Inc..Google Scholar
  4. Alzamora, S. M., Viollaz, P. E., Martínez, V. Y., Nieto, A. B., & Salvatori, D. M. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In G. E. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, & E. Parada-Arias (Eds.), Food engineering: integrated approaches (pp. 133–214). New York: Springer.Google Scholar
  5. Baker, E. A. (1982). Chemistry and morphology of plant epicuticular waxes. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle, Vol. 10 (pp. 139–165). Linnean Society Symposium Series. London: Academic Press.Google Scholar
  6. Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agro-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203.CrossRefGoogle Scholar
  7. Bargel, H., & Neinhuis, C. (2005). Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56, 1049–1060.CrossRefGoogle Scholar
  8. Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 3, 1–30.CrossRefGoogle Scholar
  9. Chaib, J., Devaux, M. F., Grotte, M. G., Robini, K., Causse, M., Lahaye, M., et al. (2007). Physiological relationship among physical, sensory, and morphological attributes of texture in tomato fruits. Journal of Experimental Botany, 8, 1915–1925.CrossRefGoogle Scholar
  10. Cosgrove, D. J. (2001). Wall structure and wall loosening. A look backwards and forwards. Plant Physiology, 125, 131–134.CrossRefGoogle Scholar
  11. Cotner, S. D., Burns, E. E., & Leeper, P. W. (1969). Pericarp anatomy of crack-resistant and susceptible tomato fruits. Journal of American Society of Horticultural Science, 94, 136–137.Google Scholar
  12. Desmet, M., Lammertyn, J., Scheerlinck, N., Verlinden, B. E., & Nicolai, B. M. (2003). Determination of puncture injury susceptibility of tomatoes. Postharvest Biology and Technology, 27, 293–303.CrossRefGoogle Scholar
  13. Domínguez, D., Cuartero, J., & Heredia, A. (2011). An overview on plant cuticle biomechanics. Plant Science, 181, 77–84.CrossRefGoogle Scholar
  14. Esau, K. (1977). Anatomy of seed plants (2nd ed.). New York: Wiley.Google Scholar
  15. Fava, J., Hodara, K., Nieto, A. B., Guerrero, S. N., Alzamora, S. M., & Castro, M. A. (2011). Structure (micro, ultra, nano), colour and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV-C irradiation and ultrasound. Food Research International, 44, 2938–2948.CrossRefGoogle Scholar
  16. George, B., Kaur, C., Khurdiya, D. S., & Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chemistry, 84, 45–51.CrossRefGoogle Scholar
  17. Guerrero, S. N., López-Malo, A., & Alzamora, S. M. (2001). Effect of ultrasound on the survival of Saccharomyces cerevisiae. Influence of temperature, pH and amplitude. Innovative Food Science and Emerging Technologies, 2, 31–39.CrossRefGoogle Scholar
  18. Holloway, P. J. (1982). The chemical constitution of plant cutins. In D. F. Cutler, K. L. Alvin, & C. E. Price (Eds.), The plant cuticle, Vol. 10 (pp. 45–85). Linnean Society Symposium Series. London: Academic Press.Google Scholar
  19. Jackman, R. L., & Stanley, D. W. (1994). Influence of the skin on puncture properties of chilled and nonchilled tomato fruit. Journal of Texture Studies, 25, 221–230.CrossRefGoogle Scholar
  20. Jackman, R., & Stanley, D. (1995). Perspectives in the textural evaluation of plant foods. Trends in Food Science and Technology, 6, 187–194.CrossRefGoogle Scholar
  21. Jeffree, C. E., Baker, E. A., & Holloway, P. J. (1976). Origins of the fine structure of plant epicuticular waxes. In C. H. Dickinson & T. F. Preece (Eds.), Microbiology of aerial plant surface (pp. 119–158). London: Academic Press.Google Scholar
  22. Juven, B. J., & Pierson, M. D. (1996). Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. Journal of Food Protection, 59, 1233–1241.CrossRefGoogle Scholar
  23. Kabas, O., & Ozmerzi, A. (2008). Determining the mechanical properties of cherry tomato varieties for handling. Journal of Texture Studies, 39, 199–209.CrossRefGoogle Scholar
  24. Lara, I., Belge, B., & Goulao, L. F. (2014). The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology, 87, 103–112.CrossRefGoogle Scholar
  25. López-Malo, A., Guerrero, S., & Alzamora, S. M. (1999). Saccharomyces cerevisiae thermal inactivation kinetics combined with ultrasound. Journal of Food Protection, 62, 1215–1217.CrossRefGoogle Scholar
  26. Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicon esculentum). Journal of the Science of Food and Agriculture, 82, 323–330.CrossRefGoogle Scholar
  27. Mason, T. J. (1990). Sonochemistry: the uses of ultrasound in chemistry. Cambridge: Royal Society of Chemistry.Google Scholar
  28. Matas, A. J., Cobb, E. D., Bartsch, J. A., Paolillo, D. J., & Niklas, K. J. (2004). Biomechanics and anatomy of Lycopersicum esculentum fruit peels and enzyme-treated samples. American Journal of Botany, 91, 352–360.CrossRefGoogle Scholar
  29. Maury, C., Madieta, E., Le Moigne, M., Mehinagic, E., Siret, R., & Jourjon, F. (2009). Development of a mechanical texture test to evaluate the ripening process of cabernet franc grapes. Journal of Texture Studies, 40, 511–535.CrossRefGoogle Scholar
  30. McGarigal, K., Cushman, S., & Stafford, S. (2000). Multivariate statistics for wildlife and ecology research. New York: Springer-Verlag.CrossRefGoogle Scholar
  31. Miller, R. A. (1986). Oxidation of cell wall polysaccharides by hydrogen peroxide: a potential mechanism for cell wall breakdown in plants. Biochemical and Biophysical Research Communications, 141, 238–244.CrossRefGoogle Scholar
  32. Pagliarini, E., Monteleone, E., & Ratti, S. (2001). Sensory profile of eight tomato cultivars (Lycopersicon esculentum) and its relationship to consumer preference. Italian Journal of Food Science, 13, 285–296.Google Scholar
  33. Petracek, P. D., & Bukovac, M. J. (1995). Rheological properties of enzymatically isolated tomato fruit cuticle. Plant Physiology, 109, 675–679.CrossRefGoogle Scholar
  34. Pinelo, M., Arnous, A., & Meyer, A. S. (2006). Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science and Technology, 17, 579–590.CrossRefGoogle Scholar
  35. Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. New York: Cambridge University Press.CrossRefGoogle Scholar
  36. Raffellini, S., Schenk, M., Guerrero, S. N., & Alzamora, S. M. (2011). Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations. Food Control, 22, 920–932.CrossRefGoogle Scholar
  37. Rao, A. V., & Agarwal, S. (2000). Role of antioxidant lycopene in cancer and heart disease. Journal of the American College of Nutrition, 19, 563–569.CrossRefGoogle Scholar
  38. Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology, 17, 208–212.CrossRefGoogle Scholar
  39. Sao José, J. F. B., & Vanetti, M. C. D. (2012). Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control, 24, 95–99.CrossRefGoogle Scholar
  40. Sharoni, Y., & Levi, Y. (2006). Cancer prevention by dietary tomato lycopene and its molecular mechanisms. In A. V. Rao (Ed.), Tomatoes, lycopene & human health (pp. 111–125). Barcelona: Caledonian Science Press Ltd..Google Scholar
  41. Sila, D. N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G. K., et al. (2008). Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends in Food Science and Technology, 19, 309–319.CrossRefGoogle Scholar
  42. Sirisomboon, P., Tanaka, M., Akinaga, T., & Kojima, T. (2000). Evaluation of the texture properties of Japanese pear. Journal of Texture Studies, 31, 665–677.CrossRefGoogle Scholar
  43. Spurr, A. R. (1969). Low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 31–43.CrossRefGoogle Scholar
  44. Thompson, R. L., Fleming, H. P., & Hamann, D. D. (1992). Delineation of puncture forces for exocarp and mesocarp tissues in cucumber fruit. Journal of Texture Studies, 23, 169–184.CrossRefGoogle Scholar
  45. Waldron, K. W., Parker, M. L., & Smith, A. C. (2003). Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety, 4, 101–119.Google Scholar
  46. Wang, W., Ma, X., Zou, M., Jiang, P., Hu, W., Li, J., et al. (2015). Effects of ultrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes. Journal of Food Science, 80, C2117–C2126.CrossRefGoogle Scholar
  47. Wattendorff, J., & Holloway, P. J. (1980). Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane of Agave americana L. in situ. Annals of Botany, 46, 13–28.CrossRefGoogle Scholar
  48. Wilcox, J. K., Catignani, G. L., & Lazarus, S. (2003). Tomatoes and cardiovascular health. Critical Reviews in Food Science and Nutrition, 43, 1–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Grupo de trabajo sobre Conservación de la Biodiversidad, Subsecretaría de Planificación y Política Ambiental, Secretaría de Ambiente y Desarrollo SustentableC.A.B.A.Argentina
  2. 2.Departamento de Industrias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaC.A.B.A.Argentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas de la República ArgentinaC.A.B.A.Argentina
  4. 4.Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de AgronomíaUniversidad de Buenos AiresC.A.B.A.Argentina
  5. 5.Anatomía Vegetal Aplicada, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaC.A.B.A.Argentina

Personalised recommendations