Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1310–1323 | Cite as

Assessment of Table Olives’ Organoleptic Defect Intensities Based on the Potentiometric Fingerprint Recorded by an Electronic Tongue

  • Ítala M.G. Marx
  • Nuno Rodrigues
  • Luís G. Dias
  • Ana C.A. Veloso
  • José A. Pereira
  • Deisy A. Drunkler
  • António M. Peres
Original Paper

Abstract

Table olives are prone to the appearance of sensory defects that decrease their quality and in some cases result in olives unsuitable for consumption. The evaluation of the type and intensity of the sensory negative attributes of table olives is recommended by the International Olive Council, although not being legally required for commercialization. However, the accomplishment of this task requires the training and implementation of sensory panels according to strict directives, turning out in a time-consuming and expensive procedure that involves a degree of subjectivity. In this work, an electronic tongue is proposed as a taste sensor device for evaluating the intensity of sensory defects of table olives. The potentiometric signal profiles gathered allowed establishing multiple linear regression models, based on the most informative subsets of signals (from 24 to 29 recorded during the analysis of olive aqueous pastes and brine solutions) selected using a simulated annealing meta-heuristic algorithm. The models enabled the prediction of the median intensities (R 2 ≥ 0.942 and RMSE ≤ 0.356, for leave-one-out or repeated K-fold cross-validation procedures) of butyric, musty, putrid, winey-vinegary, and zapateria negative sensations being, in general, the predicted intensities within the range of intensities perceived by the sensory panel. Indeed, based on the predicted mean intensities of the sensory defects, the electrochemical-chemometric approach developed could correctly classify 86.4% of the table olive samples according to their trade category based on a sensory panel evaluation and following the International Olive Council regulations (i.e., extra, 1st choice, 2nd choice, and olives that may not be sold as table olives). So, the satisfactory overall predictions achieved demonstrate that the electronic tongue could be a complementary tool for assessing table olive defects, reducing the effort of trained panelists and minimizing the risk of subjective evaluations.

Keywords

Table olives Sensory defects intensity Electronic tongue Multivariate linear regression models Simulated annealing algorithm 

Notes

Acknowledgments

This work was financially supported by Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM, by Project UID/QUI/00616/2013—CQ-VR, and UID/AGR/00690/2013—CIMO, all funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through Fundação para a Ciência e a Tecnologia (FCT), Portugal. Strategic funding of UID/BIO/04469/2013 unit is also acknowledged. Nuno Rodrigues thanks FCT, POPH-QREN, and FSE for the Ph.D. Grant (SFRH/BD/104038/2014).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Apetrei, I. M., & Apetrei, C. (2013). Voltammetric e-tongue for the quantification of total polyphenol content in olive oils. Food Research International, 54, 2075–2082.CrossRefGoogle Scholar
  2. Apetrei, C., Apetrei, I. M., Villanueva, S., de Saja, J. A., Gutierrez-Rosales, F., & Rodriguez-Mendez, M. L. (2010). Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness. Analytica Chimica Acta, 663, 91–97.CrossRefGoogle Scholar
  3. Apetrei, C., Ghasemi-Vernamkhasti, M., & Apetrei, I. M. (2016). Chapter 27—Olive oil and combined electronic nose and tongue. In M. L. Rodríguez-Méndez (Ed.), Electronic noses and tongues in food science (pp. 277–289). London: Academic Press.Google Scholar
  4. Bianchi, G. (2003). Lipids and phenols in table olives. European Journal of Lipid Science and Technology, 105, 229–242.CrossRefGoogle Scholar
  5. Borràs, E., Mestres, M., Aceña, L., Busto, O., Ferré, J., Boqué, R., & Calvo, A. (2015). Identification of olive oil sensory defects by multivariate analysis of mid infrared spectra. Food Chemistry, 187, 197–203.CrossRefGoogle Scholar
  6. Boskou, G., Salta, F. N., Chrysostomou, S., Mylona, A., Chiou, A., & Andrikopoulos, N. K. (2006). Antioxidant capacity and phenolic profile of table olives from Greek market. Food Chemistry, 94, 558–564.CrossRefGoogle Scholar
  7. Cadima, J., Cerdeira, J. O., & Minhoto, M. (2004). Computational aspects of algorithms for variable selection in the 410 context of principal components. Computational Statistics & Data Analysis, 47, 225–236.CrossRefGoogle Scholar
  8. Cadima, J., Cerdeira, J. O., Silva, P. D., & Minhoto, M. (2012). The subselect R package, http://cran.rproject.org/web/packages/subselect/vignettes/subselect.pdf. Accessed 15/02/2016
  9. Cano-Lamadrid, M., Hernández, F., Corell, M., Burló, F., Legua, P., Moriana, A., & Carbonell-Barrachina, Á. A. (2017). Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation. Journal of the Science of Food and Agriculture, 97, 444–451.CrossRefGoogle Scholar
  10. Casale, M., Zunin, P., Cosulich, M. E., Pistarino, E., Perego, P., & Lanteri, S. (2010). Characterisation of table olive cultivar by NIR spectroscopy. Food Chemistry, 122, 1261–1265.CrossRefGoogle Scholar
  11. Cortés-Delgado, A., Sánchez, A. H., de Castro, A., López-López, A., Beato, V. M., & Montaño, A. (2016). Volatile profile of Spanish-style green table olives prepared from different cultivars grown at different locations. Food Research International, 83, 131–142.CrossRefGoogle Scholar
  12. Cortez, P. (2014). Modern optimization with R, Use R! series. New York: Springer.Google Scholar
  13. Cosio, M. S., Ballabio, D., Benedetti, S., & Gigliotti, C. (2007). Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue. Food Chemistry, 101, 485–491.CrossRefGoogle Scholar
  14. Dias, L. A., Peres, A. M., Veloso, A. C. A., Reis, F. S., Vilas-Boas, M., & Machado, A. A. S. C. (2009). An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sensors and Actuators B, 136, 209–217.CrossRefGoogle Scholar
  15. Dias, L. G., Sequeira, C., Veloso, A. C. A., Sousa, M. E. B. C., & Peres, A. M. (2014). Evaluation of healthy and sensory indexes of sweetened beverages using an electronic tongue. Analytica Chimica Acta, 848, 32–42.CrossRefGoogle Scholar
  16. Dias, L. G., Veloso, A. C. A., Sousa, M. E. B. C., Estevinho, L., Machado, A. A. S. C., & Peres, A. M. (2015). A novel approach for honey pollen profile assessment using an electronic tongue and chemometric tools. Analytica Chimica Acta, 900, 36–45.CrossRefGoogle Scholar
  17. Dias, L. G., Rodrigues, N., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2016a). Monovarietal extra virgin olive oils classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 242, 259–270.CrossRefGoogle Scholar
  18. Dias, L. G., Alberto, Z., Veloso, A. C. A., & Peres, A. M. (2016b). Electronic tongue: a versatile tool for mineral and fruit-flavored waters recognition. Journal of Food Measurement and Characterization, 10, 264–273.CrossRefGoogle Scholar
  19. Galán-Soldevilla, H., Pérez-Cacho, P. R., & Campuzano, J. A. H. (2013). Determination of the characteristic sensory profiles of Aloreña table-olive. Grasas y Aceites, 64, 442–452.CrossRefGoogle Scholar
  20. IOC, International Olive Council (2011). Method for the sensory analysis of Table Olives. http://www.internationaloliveoil.org/estaticos/view/224-testing-methods, 2011 (Accessed 10-02-16).
  21. IOC, International Olive Oil Council. (2004). ‘Trade standards applying to table olives.’ IOC/OT/NC no. 1. Madrid: International Olive Oil Council.Google Scholar
  22. Lanza, B. (2012). Chapter 16—Nutritional and sensory quality of table olives. In I. Muzzalupo (Ed.), Olive germplasm—the olive cultivation, table olive and olive oil industry in Italy. Agricultural and Biological Sciences (pp. 343–372). InTech. doi: 10.5772/3314.
  23. Lanza, B., & Amoruso, F. (2016). Sensory analisys of natural table olives: relationship between appearance of defect and gustatory-kinaesthetic sensation changes. LWT-Food Science and Technology, 68, 365–372.CrossRefGoogle Scholar
  24. Marx, Í., Rodrigues, N., Dias, L. G., Veloso, A. C. A., Pereira, J. A., Drunkler, D. A., & Peres, A. M. (2017a). Sensory classification of table olives using an electronic tongue: analysis of aqueous pastes and brines. Talanta, 162, 98–106.CrossRefGoogle Scholar
  25. Marx, Í. M. G., Rodrigues, N., Dias, L. G., Veloso, A. C. A., Pereira, J. A., Drunkler, D. A., & Peres, A. M. (2017b). Quantification of table olives’ acid, bitter and salty tastes using potentiometric electronic tongue fingerprints. LWT-Food Science and Technology, 79, 394–401.CrossRefGoogle Scholar
  26. Montaño, A., Casado, F. J., de Castro, A., Sánchez, A. H., & Rejano, L. (2005). Influence of processing, storage time, and pasteurization upon the tocopherol and amino acid contents of treated green table olives. European Food Research and Technology, 220, 255–260.CrossRefGoogle Scholar
  27. Panagou, E. Z., Sahgal, N., Magan, N., & Nychas, G.-J. E. (2008). Table olives volatile fingerprints: potential of an electronic nose for quality discrimination. Sensors and Actuators B, 134, 902–907.CrossRefGoogle Scholar
  28. Ramírez, E., García, P., Brenes, M., & Romero, C. (2016). Evaluation of chemical components of debittered olives undergone preservation and polyphenol oxidation. International Journal of Food Science and Technology, 51, 1674–1679.CrossRefGoogle Scholar
  29. Rodrigues, N., Dias, L. G., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2016a). Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT–Food Science and Technology, 73, 683–692.Google Scholar
  30. Rodrigues, N., Dias, L. G., Veloso, A. C. A., Pereira, J. A., & Peres, A. M. (2016b). Evaluation of extra-virgin olive oils shelf life using an electronic tongue-chemometric approach. European Food Research and Technology (in press). doi: 10.1007/s00217-016-2773-2.Google Scholar
  31. Rodríguez-Méndez, M. L., Apetrei, C., & de Saja, J. A. (2010). Chapter 57—Electronic tongues purposely designed for the organoleptic characterization of olive oils. In V. R. Preedy & R. R. Watson (Eds.), Olives and olive oil in health and disease prevention (pp. 525-532). London: Academic Press.Google Scholar
  32. Roig, B., & Thomas, O. (2003a). Rapid estimation of global sugars by UV photodegradation and UV spectrophotometry. Analytica Chimica Acta, 477, 325–329.CrossRefGoogle Scholar
  33. Roig, B., & Thomas, O. (2003b). UV monitoring of sugars during wine making. Carbohydrate Research, 38, 79–83.CrossRefGoogle Scholar
  34. Santonico, M., Grasso, S., Genova, F., Zompanti, A., Parente, F. R., & Pennazza, G. (2015). Unmasking of olive oil adulteration via a multi-sensor platform. Sensors, 15, 21660–21672.CrossRefGoogle Scholar
  35. Sousa, A., Casal, S., Bento, A., Malheiro, R., Oliveira, M. B. P. P., & Pereira, J. A. (2011). Chemical characterization of “Alcaparras” stoned table olives from Northeast Portugal. Molecules, 16, 9025–9040.CrossRefGoogle Scholar
  36. Veloso, A. C. A., Dias, L. G., Rodrigues, N., Pereira, J. A., & Peres, A. M. (2016). Sensory intensity assessment of olive oils using an electronic tongue. Talanta, 146, 585–593.CrossRefGoogle Scholar
  37. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer. http://www.stats.ox.ac.uk/pub/MASS4.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ítala M.G. Marx
    • 1
    • 2
  • Nuno Rodrigues
    • 3
    • 4
  • Luís G. Dias
    • 1
    • 5
  • Ana C.A. Veloso
    • 6
    • 7
  • José A. Pereira
    • 3
  • Deisy A. Drunkler
    • 2
  • António M. Peres
    • 8
  1. 1.School of AgriculturePolytechnic Institute of BragançaBragançaPortugal
  2. 2.Universidade Tecnológica Federal do Paraná (UTFPR)MedianeiraBrazil
  3. 3.Centro de Investigação de Montanha (CIMO)ESA, Instituto Politécnico de BragançaBragançaPortugal
  4. 4.Departamento de Ingeniería AgráriaUniversidad de LéonLéonSpain
  5. 5.Centro de Química - Vila Real (CQ-VR)University of Trás-os-Montes e Alto DouroVila RealPortugal
  6. 6.Instituto Politécnico de Coimbra, ISEC, DEQBCoimbraPortugal
  7. 7.Centre of Biological Engineering (CEB)University of MinhoBragaPortugal
  8. 8.Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior AgráriaInstituto Politécnico de BragançaBragançaPortugal

Personalised recommendations