Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1297–1309 | Cite as

Improvement of Aroma and Shelf-Life of Non-alcoholic Beverages Through Cyclodextrins-Limonene Inclusion Complexes

  • Cátia Saldanha do Carmo
  • Rita Pais
  • Ana L. Simplício
  • Marília Mateus
  • Catarina M.M. Duarte
Original Paper
  • 258 Downloads

Abstract

Limonene is a monoterpene flavor compound found in several beverages. However, it easily degrades by oxidation reactions at acidic environment contributing to an undesirable off-flavor. Encapsulation technologies can protect compounds from degradation. This work focuses on the effect of using complexes of limonene with α-, β-, and γ- and HP-β-cyclodextrins in non-alcoholic beverages to improve flavor and shelf-life stability due to the chemical structure of cyclodextrins. Spray-drying technology was applied to prepare different cyclodextrin/limonene forms, from which the most promising was selected and further applied in simulated lemon juice beverages. Different drying process conditions were tested, namely feed temperature (120, 160, and 180 °C) and setting of prior incubation (temperature, room and 50 °C; time, 0.17 and 24 h). An inlet temperature of 160 °C favored the encapsulation of limonene into resulting nano/microparticles. Moreover, incubation for 24 h enhanced limonene retention for all complexes, especially for β-cyclodextrin/limonene complexes, which achieved 66% of encapsulation efficiency and a 6.25 w/w of limonene load. The β-cyclodextrin/limonene particles which enabled higher load (160 °C, 24 h) presented particle size ranging between 1 and 3 μm and were chosen to undergo an accelerated aging process in a lemon juice beverage model. This study revealed that the limonene content decreased over time for model and supplemented juice, but decreased less when β-cyclodextrin/limonene particles were added. After 10 days, which mimics 9 months of storage, 40% of complexed limonene remained in the model beverage.

Keywords

α-Cyclodextrin β-Cyclodextrin γ-Cyclodextrin HP-β-cyclodextrin Limonene Spray-drying 

Notes

Acknowledgements

This study was financially supported by ITQB/IBET, IST/iBB and SUMOL+COMPAL. Furthermore, this work acknowledges Fundação para a Ciência e Tecnologia (FCT) through PEst-OE/EQB/LA0004/2011, the financial support received from FCT through the doctoral (SFRH/BDE/51856/2012) fellowship and R&D units iNOVA4Health-UID/Multi/04462/2013 and GreenIT-UID/Multi/04551/2013, programs financially supported by FCT/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement. Also acknowledged is the funding received from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N.007317) in the framework of iBB activities.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interests.

References

  1. Astray, G., Gonzalez-Barreiro, C., Mejuto, J. C., Rial-Otero, R., & Simal-Gandara, J. (2009). A review on the use of cyclodextrins in foods. Food Hydrocolloids, 23(7), 1631–1640. doi: 10.1016/j.foodhyd.2009.01.001.CrossRefGoogle Scholar
  2. Astray, G., Mejuto, J. C., Morales, J., Rial-Otero, R., & Simal-Gandara, J. (2010). Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Research International, 43(4), 1212–1218. doi: 10.1016/j.foodres.2010.02.017.CrossRefGoogle Scholar
  3. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. doi: 10.1111/1541-4337.12179.CrossRefGoogle Scholar
  4. Berlinet, C., Ducruet, V., Brillouet, J.-M., Reynes, M., & Brat, P. (2005). Evolution of aroma compounds from orange juice stored in polyethylene terephthalate (PET). Food Additives and Contaminants, 22(2), 185–195 JOUR.CrossRefGoogle Scholar
  5. Bhandari, B. R., D’Arc, B. R., & Padukka, I. (1999). Encapsulation of lemon oil by paste method using β-cyclodextrin: Encapsulation efficiency and profile of oil volatiles. Journal of Agricultural and Food Chemistry, 47(12), 5194–5197. doi: 10.1021/jf9902503.CrossRefGoogle Scholar
  6. Carrier, R. L., Miller, L. A., & Ahmed, I. (2007). The utility of cyclodextrins for enhancing oral bioavailability. Journal of Controlled Release, 123(2), 78–99. doi: 10.1016/j.jconrel.2007.07.018.CrossRefGoogle Scholar
  7. Ciriminna, R., Lomeli-Rodriguez, M., Demma Cara, P., Lopez-Sanchez, J. A., & Pagliaro, M. (2014). Limonene: A versatile chemical of the bioeconomy. Chemical Communications, 50(97), 15288–15296. doi: 10.1039/C4CC06147K.CrossRefGoogle Scholar
  8. Del Valle, E. M. M. (2004). Cyclodextrins and their uses: A review. Process Biochemistry, 39(9), 1033–1046. doi: 10.1016/S0032-9592(03)00258-9.CrossRefGoogle Scholar
  9. Djordjevic, D., Cercaci, L., Alamed, J., McClements, D. J., & Decker, E. A. (2007). Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 55(9), 3585–3591. doi: 10.1021/jf063472r.CrossRefGoogle Scholar
  10. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. doi: 10.1016/j.jcis.2011.07.017.CrossRefGoogle Scholar
  11. Fang, Z., Comino, P. R., & Bhandari, B. (2013). Effect of encapsulation of d-limonene on the moisture adsorption property of beta-cyclodextrin. LWT - Food Science and Technology, 51(1), 164–169. doi: 10.1016/j.lwt.2012.09.016.CrossRefGoogle Scholar
  12. Garnero, C., & Longhi, M. (2007). Study of ascorbic acid interaction with hydroxypropyl-beta-cyclodextrin and triethanolamine, separately and in combination. Journal of Pharmaceutical and Biomedical Analysis, 45(4), 536–545. doi: 10.1016/j.jpba.2007.07.030.CrossRefGoogle Scholar
  13. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. doi: 10.1016/j.foodres.2007.07.004.CrossRefGoogle Scholar
  14. Gomez-Ariza, J. L., Garcia-Barrera, T., & Lorenzo, F. (2004). Determination of flavour and off-flavour compounds in orange juice by on-line coupling of a pervaporation unit to gas chromatography–mass spectrometry. Journal of Chromatography A, 1047(2), 313–317 JOUR.CrossRefGoogle Scholar
  15. Hakim, I. A., McClure, T., & Liebler, D. (2000). Assessing dietary d-limonene intake for epidemiological studies. Journal of Food Composition and Analysis, 13(4), 329–336 JOUR.CrossRefGoogle Scholar
  16. Hedges, A. (2009). Cyclodextrins: Properties and Applications. In Starch (pp. 833–851). doi: 10.1016/B978–0–12-746275-2.00022-7
  17. Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002). Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. Journal of Agricultural and Food Chemistry, 50(7), 1815–1821. doi: 10.1021/jf0113732.CrossRefGoogle Scholar
  18. Isengard, H.-D., & Präger, H. (2003). Water determination in products with high sugar content by infrared drying. Food Chemistry, 82(1), 161–167. doi: 10.1016/S0308-8146(02)00538-1.CrossRefGoogle Scholar
  19. Koontz, J. L., Marcy, J. E., O’Keefe, S. F., & Duncan, S. E. (2009). Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin. Journal of Agricultural and Food Chemistry, 57(4), 1162–1171. doi: 10.1021/jf802823q.CrossRefGoogle Scholar
  20. Liégeois, C., Meurens, N., Badot, C., & Collin, S. (2002). Release of deuterated (E)-2-nonenal during beer aging from labeled precursors synthesized before boiling. Journal of Agricultural and Food Chemistry, 50(26), 7634–7638. doi: 10.1021/jf020617v.CrossRefGoogle Scholar
  21. Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017–1025. doi: 10.1021/js950534b.CrossRefGoogle Scholar
  22. Lund, B., & Baird-Parker, T. C. (2000). Microbiological safety and quality of food (Vol. 1). BOOK, Springer Science & Business Media.Google Scholar
  23. Marcotte, M., Stewart, B., & Fustier, P. (1998). Abused thermal treatment impact on degradation products of chilled pasteurized orange juice. Journal of Agricultural and Food Chemistry, 46(5), 1991–1996.CrossRefGoogle Scholar
  24. McGrath, T. F., Elliott, C. T., & Fodey, T. L. (2012). Biosensors for the analysis of microbiological and chemical contaminants in food. Analytical and Bioanalytical Chemistry, 403(1), 75–92. doi: 10.1007/s00216-011-5685-9.CrossRefGoogle Scholar
  25. Mourtzinos, I., Salta, F., Yannakopoulou, K., Chiou, A., & Karathanos, V. T. (2007). Encapsulation of olive leaf extract in beta-cyclodextrin. Journal of Agricultural and Food Chemistry, 55(20), 8088–8094. doi: 10.1021/jf0709698.CrossRefGoogle Scholar
  26. Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., Frutos, M. J., et al. (2016) .Re-Reevaluation of β-cyclodextrin (E 459) as a food additive. EFSA Journal, 14(12). doi: 10.2903/j.efsa.2016.4628
  27. Mourtzinos, I., Makris, D. P., Yannakopoulou, K., Kalogeropoulos, N., Michali, I., & Karathanos, V. T. (2008). Thermal stability of anthocyanin extract of Hibiscus sabdariffa L. in the presence of β-cyclodextrin. Journal of Agricultural and Food Chemistry, 56(21), 10303–10310. doi: 10.1021/jf801389j.CrossRefGoogle Scholar
  28. Murugesan, R., & Orsat, V. (2012). Spray drying for the production of nutraceutical ingredients-a review. Food and Bioprocess Technology, 5(1), 3–14. doi: 10.1007/s11947-011-0638-z.CrossRefGoogle Scholar
  29. Navarro, P., Nicolas, T. S., Gabaldon, J. A., Mercader-Ros, M. T., Calín-Sanchez, Á., Carbonell-Barrachina, Á. A., & Pérez-López, A. J. (2011). Effects of cyclodextrin type on vitamin C, antioxidant activity, and sensory attributes of a mandarin juice enriched with pomegranate and goji berries. Journal of Food Science, 76(5). doi: 10.1111/j.1750-3841.2011.02176.x.
  30. Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815. doi: 10.1016/j.profoo.2011.09.265.CrossRefGoogle Scholar
  31. Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47. doi: 10.1007/s11947-010-0328-2.CrossRefGoogle Scholar
  32. Nisperos-Carriedo, M. O., & Shaw, P. E. (1990). Volatile flavor components of fresh and processed orange juices. Food Technology, 44(4), 134–138 http://cat.inist.fr/?aModele=afficheN&cpsidt=6896454. Accessed 7 January 2017.Google Scholar
  33. Nunez-Delicado, E., SanchezFerrer, A., & GarciaCarmona, F. (1997). Cyclodextrins as secondary antioxidants: Synergism with ascorbic acid. Journal of Agricultural and Food Chemistry, 45(8), 2830–2835.CrossRefGoogle Scholar
  34. Reineccius, T. A., Reineccius, G. A., & Peppard, T. L. (2002). Encapsulation of flavors using cyclodextrins: comparison of flavor retention in alpha , beta , and gamma types. JFS: Food Chemistry and Toxicology, 67(9), 3271–3279. doi: 10.1111/j.1365-2621.2002.tb09577.x.CrossRefGoogle Scholar
  35. Samperio, C., Boyer, R., Eigel, W. N., Holland, K. W., McKinney, J. S., O’Keefe, S. F., et al. (2010). Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. Journal of Agricultural and Food Chemistry, 58(24), 12950–12956. doi: 10.1021/jf103275a.CrossRefGoogle Scholar
  36. Shinoda, Y., Komura, H., Homma, S., & Murata, M. (2005). Browning of model orange juice solution: Factors affecting the formation of decomposition products. Bioscience, Biotechnology, and Biochemistry, 69(11), 2129–2137 JOUR.CrossRefGoogle Scholar
  37. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82–89. doi: 10.1016/j.tibtech.2008.10.010.CrossRefGoogle Scholar
  38. Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98(5), 1743–1754 JOUR.CrossRefGoogle Scholar
  39. Szente, L., & Szejtli, J. (2004). Cyclodextrins as food ingredients. Trends in Food Science and Technology, 15(3–4), 137–142. doi: 10.1016/j.tifs.2003.09.019.CrossRefGoogle Scholar
  40. Unlusayin, M., Hadaruga, N. G., Rusu, G., Gruia, A. T., Paunescu, V., & Hadaruga, D. I. (2016). Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/beta-cyclodextrin complexes. LWT - Food Science and Technology (Vol. 68). Elsevier Ltd. doi: 10.1016/j.lwt.2015.12.017
  41. Waalkens-Berendsen, D. H., Smits-van Prooije, A. E., & Bär, A. (1998a). Embryotoxicity and teratogenicity study with γ-cyclodextrin in rabbits. Regulatory Toxicology and Pharmacology, 27(2), 172–177.Google Scholar
  42. Waalkens-Berendsen, D. H., Verhagen, F. J. J., & Bär, A. (1998b). Embryotoxicity and teratogenicity study with γ-cyclodextrin in rats. Regulatory Toxicology and Pharmacology, 27(2), 166–171.Google Scholar
  43. Weisheimer, V., Miron, D., Silva, C. B., Guterres, S. S., & Schapoval, E. E. S. (2010). Microparticles containing lemongrass volatile oil: Preparation, characterization and thermal stability. Pharmazie, 65(12), 885–890. doi: 10.1691/ph.2010.0139.Google Scholar
  44. Yamamoto, C., Furuta, T., & Loon, T. (2011). Molecular encapsulation of citral or d -limonene flavor by spray drying. In Proceedings of the 11th International Congress on Engineering and Food (pp. 7–8). Athens, Greece.Google Scholar
  45. Yamamoto, C., Neoh, T. L., Honbou, H., Yoshii, H., & Furuta, T. (2012). Kinetic analysis and evaluation of controlled release of d-limonene encapsulated in spray-dried cyclodextrin powder under linearly ramped humidity. Drying Technology, 30(11–12), 1283–1291. doi: 10.1080/07373937.2012.681089.CrossRefGoogle Scholar
  46. Yuan, F., He, F., Qian, Y., Zheng, J., & Qian, M. C. (2016). Aroma stability of lemon-flavored hard iced tea assessed by chirality and aroma extract dilution analysis. Journal of Agricultural and Food Chemistry, 64(28), 5717–5723 JOUR. doi: 10.1021/acs.jafc.6b01776.CrossRefGoogle Scholar
  47. Yuliani, S., Torley, P. J., D’Arcy, B., Nicholson, T., & Bhandari, B. (2006). Extrusion of mixtures of starch and D-limonene encapsulated with beta-cyclodextrin: Flavour retention and physical properties. Food Research International, 39(3), 318–331. doi: 10.1016/j.foodres.2005.08.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cátia Saldanha do Carmo
    • 1
    • 2
  • Rita Pais
    • 1
    • 2
    • 3
  • Ana L. Simplício
    • 1
    • 2
  • Marília Mateus
    • 3
  • Catarina M.M. Duarte
    • 1
    • 2
  1. 1.Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
  2. 2.Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
  3. 3.Institute for Bioengineering and Biosciences (iBB) and Department of Bioengineering, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations