Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 7, pp 1210–1223 | Cite as

Effects of Ultrasound, High Pressure, and Manosonication Processes on Phenolic Profile and Antioxidant Properties of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine

  • William Tchabo
  • Yongkun Ma
  • Emmanuel Kwaw
  • Haining Zhang
  • Xi Li
  • Newlove A. Afoakwah
Original Paper

Abstract

The present investigation aimed to evaluate the effects of ultrasound, high pressure, and manosonication on phenolic profile in correlation to antioxidant properties of aged mulberry wines (AMWs). The results indicated a positive effect of non-thermal processes on total phenol content of the AMW conversely to total anthocyanin content, which was negatively affected by pressurization and manosonication. With regard to total flavonoid content, sonication was found to exert a positive effect. A similar trend was also observed for each of the 18 phenolic compounds quantified. The outcome suggests that these phenolic compounds have potent antioxidant properties. From correlation analysis, phenolic acids were noted to be responsible for 1,1-diphenyl-2-picrylhydrazyl, N,N-dimethyl-p-phenylenediamine, and hydrogen peroxide capacities, while total antioxidant, ferric reducing antioxidant power, reducing power, cupric ion, metal chelating, lipid peroxidation, superoxide anion, 2,2′-azino-bis(3-ethylbenzothiazolin-6-sulfonic acid), nitric oxide, and hydroxyl radical capacities were attributed to flavonols and anthocyanins.

Keywords

Mulberry Antiradical powers High pressure Ultrasound Manosonication Wine 

Abbreviations

NTP

Non-thermal processes

US

Ultrasound

HP

High pressure

MS

Manosonication

AMW

Aged mulberry wines

USW

Aged ultrasonicated wines

HPW

Aged high pressurized wines

MSW

Aged manosonicated wines

CON

Aged control wines

TPC

Total phenolic content

TFC

Total flavonoid content

TAC

Total anthocyanin content

TA-CA

Total antioxidant capacity

FRAP-CA

Ferric reducing antioxidant power capacity

RP-CA

Reducing power capacity

CUPRA-CA

Cupric ion reducing capacity

MC-CA

Metal chelating capacity

LP-CA

Lipid peroxidation capacity

DPPH-SA

1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity

ABTS-SA

2,2′-Azino-bis(3-ethylbenzothiazolin-6-sulfonic acid) radical scavenging activity

DMPD-SA

N,N-dimethyl-p-phenylenediamine radical scavenging activity

\( {\mathrm{O}}_2^{\bullet -} \)-SA)

Superoxide anion radical scavenging activity

NO-SA

Nitric oxide radical scavenging activity

HO-SA

Hydroxyl radical scavenging activity

H2O2-SA

Hydrogen peroxide scavenging activity

Supplementary material

11947_2017_1892_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 23.2 kb).
11947_2017_1892_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 16 kb).

References

  1. Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S., et al. (2013). Effect of ultrasound on different quality parameters of apple juice. Ultrasonics Sonochemistry, 20(5), 1182–1187. doi: 10.1016/j.ultsonch.2013.02.010.CrossRefGoogle Scholar
  2. Andallu, B., Shankaran, M., Ullagaddi, R., & Iyer, S. (2014). In vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. Journal of Herbal Medicine, 4(1), 10–17. doi: 10.1016/j.hermed.2013.10.002.CrossRefGoogle Scholar
  3. Arnous, A., Makris, D. P., & Kefalas, P. (2001). Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. Journal of Agricultural and Food Chemistry, 49(12), 5736–5742.CrossRefGoogle Scholar
  4. Bajpai, P. K., Warghat, A. R., Dhar, P., Kant, A., Srivastava, R. B., & Stobdan, T. (2014). Variability and relationship of fruit color and sampling location with antioxidant capacities and bioactive content in Morus alba L. fruit from trans-Himalaya, India. LWT - Food Science and Technology, 59(2, Part 1), 981–988. doi: 10.1016/j.lwt.2014.07.055.CrossRefGoogle Scholar
  5. Barreiro-Hurlé, J., Colombo, S., & Cantos-Villar, E. (2008). Is there a market for functional wines? Consumer preferences and willingness to pay for resveratrol-enriched red wine. Food Quality and Preference, 19(4), 360–371.CrossRefGoogle Scholar
  6. Buzrul, S. (2012). High hydrostatic pressure treatment of beer and wine: a review. Innovative Food Science & Emerging Technologies, 13, 1–12.CrossRefGoogle Scholar
  7. Chun, O. K., Kim, D.-O., & Lee, C. Y. (2003). Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry, 51(27), 8067–8072.CrossRefGoogle Scholar
  8. Costanigro, M., Appleby, C., & Menke, S. D. (2014). The wine headache: consumer perceptions of sulfites and willingness to pay for non-sulfited wines. Food Quality and Preference, 31, 81–89. doi: 10.1016/j.foodqual.2013.08.002.CrossRefGoogle Scholar
  9. Di Renzo, L., Carraro, A., Valente, R., Iacopino, L., Colica, C., & De Lorenzo, A. (2014). Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxidative Medicine and Cellular Longevity, 2014, 1–9.CrossRefGoogle Scholar
  10. Engmann, F. N., Ma, Y., Tchabo, W., & Ma, H. (2015). Ultrasonication treatment effect on anthocyanins, color, microorganisms and enzyme inactivation of mulberry (Moraceae nigra) juice. Journal of Food Processing and Preservation, 39(6), 854–862.CrossRefGoogle Scholar
  11. Engmann, F. N., Ma, Y., Tchabo, W., Ma, H., & Zhang, H. (2014). Optimization of ultrasonic and high hydrostatic pressure conditions on quality parameters of mulberry (Morus Moraceae) juice using response surface methodology. Journal of Food Quality, 37(5), 297–308.CrossRefGoogle Scholar
  12. Garaguso, I., & Nardini, M. (2015). Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chemistry, 179(0), 336–342. doi: 10.1016/j.foodchem.2015.01.144.CrossRefGoogle Scholar
  13. García Martín, J. F., & Sun, D.-W. (2013). Ultrasound and electric fields as novel techniques for assisting the wine ageing process: the state-of-the-art research. Trends in Food Science & Technology, 33(1), 40–53.CrossRefGoogle Scholar
  14. Giese, E. C., Gascon, J., Anzelmo, G., Barbosa, A. M., da Cunha, M. A. A., & Dekker, R. F. (2015). Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. International Journal of Biological Macromolecules, 72, 125–130.CrossRefGoogle Scholar
  15. Granato, D., Katayama, F., & Castro, I. (2010). Assessing the association between phenolic compounds and the antioxidant activity of Brazilian red wines using chemometrics. LWT-Food Science and Technology, 43(10), 1542–1549.CrossRefGoogle Scholar
  16. Gris, E., Mattivi, F., Ferreira, E., Vrhovsek, U., Pedrosa, R., & Bordignon-Luiz, M. (2013). Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity. Journal of Food Composition and Analysis, 31(1), 31–40.CrossRefGoogle Scholar
  17. Higgins, L. M., & Llanos, E. (2015). A healthy indulgence? Wine consumers and the health benefits of wine. Wine Economics and Policy, 4(1), 3–11. doi: 10.1016/j.wep.2015.01.001.CrossRefGoogle Scholar
  18. Jamroz, A., & Beltowski, J. (2001). Antioxidant capacity of selected wines. Medical Science Monitor, 7(6), 1198–1202.Google Scholar
  19. Karadeniz, M., Akçay, Y. D., Yıldırım, H. K., Yılmaz, C., & Sözmen, E. Y. (2014). Effect of red wine consumption on serum oxidation and adiponectin levels in overweight and healthy individuals. Polish Journal of Food and Nutrition Sciences, 64(3), 201–207.CrossRefGoogle Scholar
  20. Lanzotti, V. (2006). The analysis of onion and garlic. Journal of Chromatography A, 1112, 3–22.CrossRefGoogle Scholar
  21. Lee, J. Y., & Kwak, E. J. (2011). Physicochemical characteristics and antioxidant activities of grape yakju. Food Science and Biotechnology, 20(1), 175–182.CrossRefGoogle Scholar
  22. Luengo, E., Condón-Abanto, S., Condón, S., Álvarez, I., & Raso, J. (2014). Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separation and Purification Technology, 136(0), 130–136. doi: 10.1016/j.seppur.2014.09.008.CrossRefGoogle Scholar
  23. Mahmoud, H. I., ElRab, S. M. G., Khalil, A. F., & Ismael, S. M. (2014). Hypoglycemic effect of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits in diabetic rat. European Journal of Chemistry, 5(1), 65–72.CrossRefGoogle Scholar
  24. Masuzawa, N., Ohdaira, E., & Ide, M. (2000). Effects of ultrasonic irradiation on phenolic compounds in wine. Japanese Journal of Applied Physics, 39(5S), 2978.CrossRefGoogle Scholar
  25. Meng, J., Fang, Y., Gao, J., Qiao, L., Zhang, A., Guo, Z., et al. (2012). Phenolics composition and antioxidant activity of wine produced from spine grape (Vitis davidii Foex) and Cherokee rose (Rosa laevigata Michx.) fruits from South China. Journal of Food Science, 77(1), C8–C14.CrossRefGoogle Scholar
  26. Mok, C., Song, K.-T., Park, Y.-S., Lim, S., Ruan, R., & Chen, P. (2006). High hydrostatic pressure pasteurization of red wine. Journal of Food Science, 71(8), M265–M269. doi: 10.1111/j.1750-3841.2006.00145.x.CrossRefGoogle Scholar
  27. Naderi, G. A., Asgary, S., Sarraf-Zadegan, N., Oroojy, H., & Afshin-Nia, F. (2004). Antioxidant activity of three extracts of Morus nigra. Phytotherapy Research, 18(5), 365–369. doi: 10.1002/ptr.1400.CrossRefGoogle Scholar
  28. Naissides, M., Mamo, J. C. L., James, A. P., & Pal, S. (2006). The effect of chronic consumption of red wine on cardiovascular disease risk factors in postmenopausal women. Atherosclerosis, 185(2), 438–445. doi: 10.1016/j.atherosclerosis.2005.06.027.CrossRefGoogle Scholar
  29. Pérez-Gregorio, M. R., Regueiro, J., Alonso-González, E., Pastrana-Castro, L. M., & Simal-Gándara, J. (2011). Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.) LWT - Food Science and Technology, 44(8), 1793–1801. doi: 10.1016/j.lwt.2011.03.007.CrossRefGoogle Scholar
  30. Que, F., Mao, L., & Pan, X. (2006). Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Research International, 39(5), 581–587.CrossRefGoogle Scholar
  31. Raposo, R., Ruiz-Moreno, M. J., Garde-Cerdán, T., Puertas, B., Moreno-Rojas, J. M., Gonzalo-Diago, A., et al. (2016). Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine. Food Chemistry, 192, 25–33. doi: 10.1016/j.foodchem.2015.06.085.CrossRefGoogle Scholar
  32. Rawson, A., Patras, A., Tiwari, B., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Research International, 44(7), 1875–1887.CrossRefGoogle Scholar
  33. Rivero-Pérez, M. D., González-Sanjosé, M. L., Muñiz, P., & Pérez-Magariño, S. (2008). Antioxidant profile of red-single variety wines microoxygenated before malolactic fermentation. Food Chemistry, 111(4), 1004–1011.CrossRefGoogle Scholar
  34. Rivero-Pérez, M. D., González-Sanjosé, M. L., Ortega-Herás, M., & Muñiz, P. (2008). Antioxidant potential of single-variety red wines aged in the barrel and in the bottle. Food Chemistry, 111(4), 957–964.CrossRefGoogle Scholar
  35. Sánchez-Salcedo, E. M., Mena, P., García-Viguera, C., Martínez, J. J., & Hernández, F. (2015). Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. Journal of Functional Foods, 12(0), 399–408. doi: 10.1016/j.jff.2014.12.010.CrossRefGoogle Scholar
  36. Santos, M. C., Nunes, C., Cappelle, J., Gonçalves, F. J., Rodrigues, A., Saraiva, J. A., et al. (2013a). Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chemistry, 141(3), 2558–2566.CrossRefGoogle Scholar
  37. Santos, M. C., Nunes, C., Rocha, M. A. M., Rodrigues, A., Rocha, S. M., Saraiva, J. A., et al. (2013b). Impact of high pressure treatments on the physicochemical properties of a sulphur dioxide-free white wine during bottle storage: evidence for Maillard reaction acceleration. Innovative Food Science & Emerging Technologies, 20, 51–58.CrossRefGoogle Scholar
  38. Santos, M. C., Nunes, C., Saraiva, J. A., & Coimbra, M. A. (2012). Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. European Food Research and Technology, 234(1), 1–12.CrossRefGoogle Scholar
  39. Sroka, Z., & Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology, 41(6), 753–758.CrossRefGoogle Scholar
  40. Tao, Y., García, J. F., & Sun, D.-W. (2014). Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 54(6), 817–835.CrossRefGoogle Scholar
  41. Tao, Y., Wu, D., Sun, D.-W., Górecki, A., Błaszczak, W., Fornal, J., et al. (2013). Quantitative and predictive study of the evolution of wine quality parameters during high hydrostatic pressure processing. Innovative Food Science & Emerging Technologies, 20, 81–90.CrossRefGoogle Scholar
  42. Tchabo, W., Ma, Y., Engmann, F. N., & Zhang, H. (2015). Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Industrial Crops and Products, 63, 214–225.CrossRefGoogle Scholar
  43. Tiwari, B. K., Patras, A., Brunton, N., Cullen, P. J., & O’Donnell, C. P. (2010). Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrasonics Sonochemistry, 17(3), 598–604, doi: 10.1016/j.ultsonch.2009.10.009.
  44. Vally, H., Misso, N. L. A., & Madan, V. (2009). Clinical effects of sulphite additives. Clinical & Experimental Allergy, 39(11), 1643–1651. doi: 10.1111/j.1365-2222.2009.03362.x.CrossRefGoogle Scholar
  45. Van Leeuw, R., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2014). Antioxidant capacity and phenolic composition of red wines from various grape varieties: specificity of pinot noir. Journal of Food Composition and Analysis, 36(1–2), 40–50. doi: 10.1016/j.jfca.2014.07.001.CrossRefGoogle Scholar
  46. Varela-Santos, E., Ochoa-Martinez, A., Tabilo-Munizaga, G., Reyes, J. E., Pérez-Won, M., Briones-Labarca, V., et al. (2012). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies, 13, 13–22.CrossRefGoogle Scholar
  47. Wang, J., & Mazza, G. (2002). Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry, 50(4), 850–857.CrossRefGoogle Scholar
  48. Wang, Y., Xiang, L., Wang, C., Tang, C., & He, X. (2013). Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PloS One, 8(7), e71144.CrossRefGoogle Scholar
  49. Yoo, Y. J., Saliba, A. J., MacDonald, J. B., Prenzler, P. D., & Ryan, D. (2013). A cross-cultural study of wine consumers with respect to health benefits of wine. Food Quality and Preference, 28(2), 531–538. doi: 10.1016/j.foodqual.2013.01.001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • William Tchabo
    • 1
  • Yongkun Ma
    • 1
  • Emmanuel Kwaw
    • 1
  • Haining Zhang
    • 1
  • Xi Li
    • 1
  • Newlove A. Afoakwah
    • 1
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations