Food and Bioprocess Technology

, Volume 10, Issue 6, pp 1142–1153 | Cite as

Stabilization of Refrigerated Avocado Pulp: Chemometrics-Assessed Antibrowning Allium and Brassica Extracts as Effective Lipid Oxidation Retardants

  • M. C. Bustos
  • M. F. Mazzobre
  • M. P. BueraEmail author
Original Paper


The effectiveness of Allium and Brassica extracts to inhibit the evolution of lipids oxidation in avocado pulp under refrigeration (storage at 4 °C) was studied. Onion, garlic, scallion, white cabbage, cauliflower, and Brussels sprouts extract were tested as preserving agents in refrigerated avocado pulp. Allium extracts promoted almost a 60% retention of the intrinsic anti-radical capacity of the pulps. Considering secondary oxidation effects, extinction coefficient at 270 nm shows that all treated pulps (except those with scallion addition) were acceptable at the 30th storage day (K 270 < 0.22), but they were all significantly less oxidized than the untreated samples (K 270 = 1.8) (P < 0.05). Garlic-treated avocado showed the highest antioxidant effectiveness, based on C=CH cis proportion (I cis = 108.3), while samples with white cabbage extract presented the highest C=CH trans (I trans = 5.7) proportion after 30 days. The PCA method was discriminant enough since 83.6% of the variance was explained by the first two principal components, allowing the samples to be grouped according to storage time and extract type. This study confirmed that the addition of garlic, onion, and cauliflower extracts enhanced lipid antioxidant properties in refrigerated avocado pulps.


Allium Brassica Lipid oxidation Avocado pulp 



The authors acknowledge financial support from UBACYT 20020100100397, ANPCYT (PICT 2008 0928), and CONICET PIP 100846 and 100486.


  1. Abu-Ghannam, N., & Jaiswal, A. K. (2015). Blanching as a treatment process: effect on polyphenol and antioxidant capacity of cabbage. In V. Preedy (Ed.), Processing and impact on active components in food (pp. 35–43). London: Academic Press. doi: 10.1016/B978-0-12-404699-3.00005-6.CrossRefGoogle Scholar
  2. Aguirezábal, M. M., Mateo, J., Domínguez, M. C., & Zumalacárregui, J. M. (2000). The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Science, 54, 77–81. doi: 10.1016/S0309-1740(99)00074-1.CrossRefGoogle Scholar
  3. Balda, P., Tonello, C., Peregrina, R., & de Celis, C. (2011). Industrial high pressure processing of avocado products: emerging trends and implementation in new markets. In Proceedings VII World Avocado Congress.Google Scholar
  4. Berasategi, I., Barriuso, B., Ansorena, D., & Astiasarán, I. (2012). Stability of avocado oil during heating: comparative study to olive oil. Food Chemistry, 132(1), 439–446. doi: 10.1016/j.foodchem.2011.11.018.CrossRefGoogle Scholar
  5. Bock, H. H. (1996). Probabilistic models in cluster analysis. Computational Statistics and Data Analysis, 23, 5–28.CrossRefGoogle Scholar
  6. Bustos, M. C., Agudelo-Laverde, L. M., Mazzobre, M. F., & Buera, M. P. (2014). The relationship between antibrowning, anti-radical and reducing capacity of Brassica and Allium extracts. The Journal of Food Studies, 3, 82–92.CrossRefGoogle Scholar
  7. Bustos, M. C., Mazzobre, M. F., & Buera, M. P. (2015). Stabilization of refrigerated avocado pulp: effect of Allium and Brassica extracts on enzymatic browning. LWT - Food Science and Technology, 61(1), 89–97. doi: 10.1016/j.lwt.2014.11.026.CrossRefGoogle Scholar
  8. CAA (2012). Alimentos grasos, aceites alimenticios. Chapter 12, Art. 535. Resolución Conjunta SPReI N° 64/2012 y SAGyP N° 165/2012. In CAA (Código Alimentario Argentino).Google Scholar
  9. Di Rienzo, J., Guzmán, A., & Casanoves, F. (2002). A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural and Food Chemistry, 7(2), 129–142.Google Scholar
  10. Di Rienzo, J., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2012). Infostat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Retrieved from
  11. Ding, H., Chin, Y. W., Kinghorn, A. D., & Ambrosio, S. M. D. (2007). Chemopreventive characteristics of avocado fruit. Seminars in Cancer Biology, 17, 386–394. doi: 10.1016/j.semcancer.2007.04.003.CrossRefGoogle Scholar
  12. Dréau, Y. L., Dupuy, N., Gaydou, V., Joachim, J., & Kister, J. (2009). Study of jojoba oil aging by FTIR. Analysis, 642, 163–170. doi: 10.1016/j.aca.2008.12.001.Google Scholar
  13. Elez-Martínez, P., Soliva-Fortuny, R. C., Gorinstein, S., & Martín-Belloso, O. (2005). Natural antioxidants preserve the lipid oxidative stability of minimally processed avocado purée. Sensory and Nutritive Quality of Food, 70(5), S325–S329.Google Scholar
  14. Elez-Martínez, P., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2007). Oxidative rancidity in avocado purée as affected by α-tocopherol, sorbic acid and storage atmosphere. European Food Research and Technology, 226, 295–300. doi: 10.1007/s00217-006-0539-y.CrossRefGoogle Scholar
  15. European Commission. (2001). Council Regulation No 1513/2001. Amending Regulations No 136/66/EEC and (EC) No 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil. Official Journal of the European Communities, L, 201, 4–7.Google Scholar
  16. Gaze, L. V., Costa, M. P., Monteiro, M. L. G., Lavorato, J. A. A., Conte Júnior, C. A., Raices, R. S. L., … Freitas, M. Q. (2015). Dulce de Leche, a typical product of Latin America: Characterisation by physicochemical, optical and instrumental methods. Food Chemistry, 169, 471–477. doi: 10.1016/j.foodchem.2014.08.017.
  17. Guillén, M., & Nerea, C. (1997). Infrared spectroscopy in the study of edible oils and fats. Journal of the Science of Food and Agriculture, 75(1), 1–11.Google Scholar
  18. Guillén, M., & Nerea, C. (2000). Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. Journal of the Science of Food and Agriculture, 80(14), 2028–2036.Google Scholar
  19. Horita, C. N., Farías-Campomanes, A. M., Barbosa, T. S., Esmerino, E. A., Gomes, A., Bolini, H. M. A., … Pollonio, M. A. R. (2016). The antimicrobial, antioxidant and sensory properties of garlic and its derivatives in Brazilian low-sodium frankfurters along shelf-life. Food Research International, 84, 1–8. doi: 10.1016/j.foodres.2016.02.006.
  20. Jain, A. K., Murty, M. N., & Flynn, P. J. (2000). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.CrossRefGoogle Scholar
  21. Jaiswal, A., Rajauria, G., Abu-Ghannam, N., & Gupta, S. (2011). Phenolic composition, antioxidant capacity and antibacterial activity of selected Irish Brassica vegetables. Natural Products Communications, 6, 1–6.Google Scholar
  22. Laguerre, M., Lecomte, J., & Villeneuve, P. (2007). Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Progress in Lipid Research, 46, 244–282. doi: 10.1016/j.plipres.2007.05.002.CrossRefGoogle Scholar
  23. Matera, J. A., Cruz, A. G., Raices, R. S. L., Silva, M. C., Nogueira, L. C., Quitério, S. L., et al. (2014). Discrimination of Brazilian artisanal and inspected pork sausages: application of unsupervised, linear and non-linear supervised chemometric methods. Food Research International, 64, 380–386. doi: 10.1016/j.foodres.2014.07.003.CrossRefGoogle Scholar
  24. Moreno, A., Dorantes, A. L., Galíndez, J., & Guzmán, R. I. (2003). Effect of different extraction methods on fatty acids, volatile compounds, and physical and chemical properties of avocado (Persea americana Mill.) oil. Journal of Agricultural and Food Chemistry, 51, 2216–2221.CrossRefGoogle Scholar
  25. Nuutila, A. M., Puupponen-Pimiä, R., & Aarni, M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. FoodChemistry, 81, 485–493.Google Scholar
  26. Paz Antolín, I., & Molero Meneses, M. (2000). Aplicacion de la espectrofotometria UV visible al estudio de la estabilidad termica de aceites vegetables comestibles. Grasas y Aceites, 51(6), 424–428.CrossRefGoogle Scholar
  27. Pereira, E. P. R., Cavalcanti, R. N., Esmerino, E. A., Silva, R., Guerreiro, L. R. M., & Cunha, R. L. (2016a). Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit suisse cheese. Journal of Dairy Science, 99, 1–11. doi: 10.3168/jds.2015-9701.CrossRefGoogle Scholar
  28. Pereira, E. P. R., Faria, J. A. F., Cavalcanti, R. N., Garcia, R. K. A., Silva, R., Esmerino, E. A., … Cruz, A. G. (2016b). Oxidative stress in probiotic Petit Suisse: is the jabuticaba skin extract a potential option? Food Research International, 81, 149–156. doi: 10.1016/j.foodres.2015.12.034.
  29. Plaza, L., Sánchez-Moreno, C., Pascual-Teresa, S., de Ancos, B., Cano, M. P., Pacual-Teresa, S., … Cano, M. P. (2009). Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage. Journal of Agricultural and Food Chemistry, 57, 3204–3209.Google Scholar
  30. Podsedek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT - Food Science and Technology, 40, 1–11. doi: 10.1016/j.lwt.2005.07.023.CrossRefGoogle Scholar
  31. Prakash, D., Singh, B. N., & Upadhyay, G. (2007). Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry, 102, 1389–1393. doi: 10.1016/j.foodchem.2006.06.063.CrossRefGoogle Scholar
  32. Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/ antioxidant power assay. Journal of Agricultural and Food Chemistry, 48, 3396–3402.CrossRefGoogle Scholar
  33. Quiñones-Islas, N., Meza-Márquez, O. G., Osorio-Revilla, G., & Gallardo-Velazquez, T. (2013). Detection of adulterants in avocado oil by Mid-FTIR spectroscopy and multivariate analysis. Food Research International, 51(1), 148–154.Google Scholar
  34. Raitio, R., Orlien, V., & Skibsted, L. H. (2011). Storage stability of cauliflower soup powder: the effect of lipid oxidation and protein degradation reactions. Food Chemistry, 128(2), 371–379.Google Scholar
  35. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. A. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9/10), 1231–1237.CrossRefGoogle Scholar
  36. Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66, 401–436.CrossRefGoogle Scholar
  37. Roldán, E., Sánchez-Moreno, C., de Ancos, B., & Cano, M. P. (2008). Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties. Food Chemistry, 108(3), 907–916.Google Scholar
  38. Saha, F. B. U., Kansci, G., Lazar, I. M., Lazar, G., Fokou, E., & Etoa, F. X. (2013). ATR-FTIR characterization and classification of avocado oils from five Cameroon cultivars extracted with a frendly enviromental process. Enviromental Engineering and Management Journal, 12, 97–103.Google Scholar
  39. Schebor, C., Mazzobre, M. F., & Buera, M. P. (2010). Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars. Carbohydrate Research, 345(2), 303–308.CrossRefGoogle Scholar
  40. Sikora, E., Cieślik, E., Leszczynska, T., Filipiak-Florkiewicz, A., & Pisulewski, P. M. (2008). The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chemistry, 107, 55–59. doi: 10.1016/j.foodchem.2007.07.023.CrossRefGoogle Scholar
  41. Sinelli, N., Cosioa, M. S., Gigliotti, C., & Casiraghi, E. (2007). Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil “freshness”. AnalyticaChimica Acta, 598, 128–134. doi: 10.1016/j.aca.2007.07.024.CrossRefGoogle Scholar
  42. Soliva-Fortuny, R. C., Elez-Martínez, P., & Martín-Belloso, O. (2001). Evaluation of browning effect on avocado purée preserved by combined methods. Innovative Food Science and Emerging Technologies, 1, 261–268.CrossRefGoogle Scholar
  43. Tang, X., & Cronin, D. A. (2007). The effects of brined onion extracts on lipid oxidation and sensory quality in refrigerated cooked turkey breast rolls during storage. Food Chemistry, 100(2), 712–718.Google Scholar
  44. Werman, M. J., & Neeman, I. (1987). Avocado oil production and chemical characteristics. Journal of Americal Oil Chemist Society, 64, 229–232.CrossRefGoogle Scholar
  45. Xue, J., Lee, C., Wakeham, S. G., & Armstrong, R. A. (2011). Organic geochemistry using principal components analysis (PCA) with cluster analysis to study the organic geochemistry of sinking particles in the ocean. Organic Geochemistry, 42(4), 356–367. doi: 10.1016/j.orggeochem.2011.01.012.CrossRefGoogle Scholar
  46. Yahia, E. M., & González-Aguilar, G. (1998). Use of passive and semi-active atmospheres to prolong the postharvest life of avocado fruit. LWT—Food Science and Technology, 606, 602–606.Google Scholar
  47. Yang, H. S., Lee, E. J., Moon, S. H., Paik, H. D., Nam, K., & Ahn, D. U. (2011a). Effect of garlic, onion, and their combination on the quality and sensory characteristics of irradiated raw ground beef. Meat Science, 89(2), 202–208.Google Scholar
  48. Yang, H. S., Lee, E. J., Moon, S. H., Paik, H. D., & Ahn, D. U. (2011b). Addition of garlic or onion before irradiation on lipid oxidation, volatiles and sensory characteristics of cooked ground beef. Meat Science, 88(2), 286–291.Google Scholar
  49. Zocca, F., Lomolino, G., & Lante, A. (2010). Antibrowning potential of Brassicacaea processing water. Bioresource Technology, 101(10), 3791–3795.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Dpto. de Industrias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations