Skip to main content
Log in

Towards Controlled Fermentation of Table Olives: LAB Starter Driven Process in an Automatic Pilot Processing Plant

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The results of an experimental trial, carried out using a specifically prepared microbial starter, in an automated pilot plant, are presented. The microbial starter was composed by Lb. pentosus strains. The automatized process was compared with natural fermentation in plastic vats, as control. Relevant process parameters, chemico-physical determinations, instrumental texture, and microbiological analyses were carried out to monitor the fermentation process. Driving the process in controlled conditions resulted in a more rapid acidification, pH reaching lower values than the control. In controlled conditions, inoculated lactobacilli carried out a fast colonization supplanting more rapidly spoilage microflora. In started samples, yeasts number increased until reaching 5 log at 60 days, keeping this value constant until the end of the trials, while, in control batches, their growth was more rapid, reaching 5 log from 15 to 30 days, but their number decreased to 3 log at 90 days. The two processes produced olives with comparable texture profile. However, olives coming from the controlled process resulted debittered in 3 months (descriptive sensory analyses and oleuropein quantification in HPLC), while naturally fermented olives resulted not yet debittered at the end of the trial (180 days). Slight differences were found in few other sensory descriptors. Our results showed that, along with the use of effective autochthonous microbial starters, the innovation of processing plants is the next step towards the shortening of the processing time and the safety assurance of the product, while retaining the sensory quality of naturally fermented olives, using an environmentally friendly technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbarian, M., Ghasemkhani, N., & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial: A review. International Journal of Biosciences, 4(1), 42–57.

  • Bevilacqua, A., de Stefano, F., Augello, S., Pignatiello, S., Sinigaglia, M., & Corbo, M. R. (2015). Biotechnological innovations for table olives. International Journal of Food Science and Nutrition, 66, 127–131 1-5.

    Article  CAS  Google Scholar 

  • Campus, M., Sedda, P., Cauli, E., Piras, F., Comunian, R., Paba, A., Daga, E., Schirru, S., Zurru, R., & Bandino, G. (2015). Evaluation of a single strain starter culture, a selected inoculum enrichment, and natural microflora in the processing of Tonda di Cagliari natural table olives: impact on chemical, microbiological, sensory and texture quality. LWT–Food Science and Technology, 64, 671–677.

    CAS  Google Scholar 

  • Cardoso, S. M., Guyo, S., Marnet, N., Lopes-da-Silva, J. A., Renard, C. M. G. C., & Coimbra, M. A. (2005). Characterization of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. Journal of the Science of Food and Agriculture, 85, 21–32.

    Article  CAS  Google Scholar 

  • Coimbra, M. A., Waldron, K. W., Delgadillo, I., & Selvendran, R. R. (1996). Effect of processing on cell wall polysaccharides of green table olives. Journal of Agricultural and Food Chemistry, 44, 2394–2401.

    Article  CAS  Google Scholar 

  • Contreras, J. E., & Smyrl, T. G. (1981). An evaluation of osmotic concentration of apple rings using corn solids solutions. Canadian Institute of Food Science Technology Journal, 14, 310–314.

    Article  Google Scholar 

  • Corsetti, A., Perpetuini, G., Schirone, M., Tofalo, R., & Suzzi, G. (2012). Application of starter cultures to table olive fermentation: an overview on the experimental studies. Frontiers in Microbiology, 3, 1–6.

    Article  Google Scholar 

  • Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33, 1–10.

    Article  CAS  Google Scholar 

  • Fadda, C., Del Caro, A., Sanguinetti, A. M., & Piga, A. (2014). Texture and antioxidant evolution of naturally green table olives as affected by different sodium chloride brine concentrations. Grasas y Aceites, 65(1), e002.

    Article  Google Scholar 

  • Friedman, H. H., Whitney, J. E., & Szczesniak, A. S. (1963). The texturometer -a new instrument for objective texture measurement. Journal of Food Science, 28, 390–396.

    Article  Google Scholar 

  • Garrido-Fernandez, A., Fernandez Díaz, M. J., & Adams, M. R. (1997). Table olives: production and processing. London: Chapman & Hall.

    Book  Google Scholar 

  • Gutiérrez, F., Albi, M. A., Palma, R., Rios, J. J., & Olías, J. M. (1989). Bitter taste of virgin olive oil: correlation of sensory evaluation and instrumental HPLC analysis. Journal of Food Science, 54, 68–70.

    Article  Google Scholar 

  • International Olive Council (IOC). (2004). Trade standard applying to table olives. Madrid: IOC http://www.internationaloliveoil.org/estaticos/view/222-standards.

    Google Scholar 

  • International Olive Council (IOC). (2009). Determination of biophenols in olive oils by HPLC. Madrid: IOC http://www.internationaloliveoil.org/estaticos/view/224-testing-methods.

    Google Scholar 

  • International Olive Council (IOC). (2011). Method e sensory analysis of table olives. Madrid: IOC http://www.internationaloliveoil.org/estaticos/view/224-testing-methods.

    Google Scholar 

  • ISO. (2012). ISO 8586:2012. Sensory analysis e general guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors (1st ed.). Geneva: International Organization for Standardization.

    Google Scholar 

  • Isolini, D., Grand, M., & Glättli, H. (1990). Selektivmedien zum Nachweis von obligat und fakultativ heterofermentativen Laktobazillen. Schweizerische Milchwirtschaftliche Forschung, 19, 57–59.

    Google Scholar 

  • Kiai, H., & Hafidi, A. (2014). Chemical composition changes in four green olive cultivars during spontaneous fermentation. LWT-Food Science and Technology, 57, 663–670.

    Article  CAS  Google Scholar 

  • Lanza, B. (2013). Abnormal fermentations in table olive processing: microbial origin and sensory evaluation. Frontiers in Microbiology, 4(91), 1–7.

    Google Scholar 

  • Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food e principles and practices (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Lazarides, H. N. (2001). Reasons and possibilities to control solids uptake during osmotic treatment of fruits and vegetables. In P. Fito, A. Chiralt, J. M. Barat, W. E. L. Spiess, & D. Behsnilian (Eds.), Osmotic dehydratation and vacuum impregnation (pp. 33–42). Lancaster: Technomic Publishing Company, Inc.

    Google Scholar 

  • Lenart, J. M., & Flink, A. (1984). Osmotic concentration of potato. I. Criteria for the end-point of osmosis process. Journal of Food Technology, 19, 45–60.

    Article  Google Scholar 

  • MacFie, H. J. H., Bratchell, N., Greenhoff, K., & Vallis, L. V. (1989). Designs to balance the effect of order of presentation and first–order carry–over effects in hall tests. Journal of Sensory Studies, 4, 129–148.

    Article  Google Scholar 

  • Maldonado, M. B., Zuritz, C. A., & Miras, N. (2008). Influence of brine concentration on sugar and sodium chloride diffusion during the processing of the green olive variety Arauco. Grasas y Aceites, 59(3), 267–273.

    CAS  Google Scholar 

  • Marsilio, V., Seghetti, L., Iannucci, E., Russi, F., Lanza, B., & Felicioni, M. (2005). Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. Journal of the Science of Food and Agriculture, 85, 1084–1090.

    Article  CAS  Google Scholar 

  • Martorana, A., Alfonzo, A., Settanni, L., Corona, O., La Croce, F., Caruso, T., Moschetti, G., & Francesca, N. (2015). An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiology, 50, 126–140.

    Article  CAS  Google Scholar 

  • Moreira, R., Chenlo, F., Torres, M. D., & Vazquez, G. (2007). Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT-Food Science and Technology, 40, 1507–1514.

    Article  CAS  Google Scholar 

  • PanelCheck software (2014). Nofima Mat, Ås, Norway. http://www.panelcheck.com

  • Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits, international. Food Research Journal, 19(1), 7–18.

    CAS  Google Scholar 

  • Servili, M., Minnocci, A., Veneziani, G., Taticchi, A., Urbani, S., Esposto, S., Sebastiani, L., Valmorri, S., & Corsetti, A. (2008). Compositional and tissue modifications induced by the natural fermentation process in table olives. Journal of Agricultural and Food Chemistry, 56, 6389–6396.

    Article  CAS  Google Scholar 

  • Szczesniak, A. S. (1963). Classification of textural characteristics. Journal of Food Science, 28, 385–389.

    Article  Google Scholar 

  • Tassou, C. C., Panagou, E. Z., & Katsaboxakis, K. Z. (2002). Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiology, 19, 605–615.

    Article  CAS  Google Scholar 

  • Tomic, O., Nilsen, A., Martens, M., & Næs, T. (2007). Visualization of sensory profiling data for performance monitoring. LWT-Food Science and Technology, 40(2), 262–269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Campus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campus, M., Cauli, E., Scano, E. et al. Towards Controlled Fermentation of Table Olives: LAB Starter Driven Process in an Automatic Pilot Processing Plant. Food Bioprocess Technol 10, 1063–1073 (2017). https://doi.org/10.1007/s11947-017-1882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1882-7

Keywords

Navigation