Abstract
Flaxseed has gained significant interest as a source of edible oil that is rich in omega-3 fatty acids, high content of flaxseed proteins and lignans that are known to be therapeutic. Low oxidative stability of flaxseed oil necessitates the use of extraction technologies that are advanced and economically viable than the currently used cold press extraction. This work compares the yield and quality of the flaxseed oil obtained by individually optimized supercritical carbon dioxide extraction (SCE), three-phase partitioning (TPP), solvent extraction and the reported values of cold press extraction. The yields of oil obtained were comparable for SCE (30.03% w/w), TPP (22.46% w/w), ultrasonic pre-treated TPP (27.05% w/w), enzyme-pre-treated TPP (26.24% w/w) and reported value of 25.50% w/w in commercial screw-press expeller but lower than solvent extraction (41.53% w/w). Amongst the techniques evaluated, enzyme-pre-treated TPP using Accellerase® is recommended due to excellent protein recovery of 86.62%, better oil quality (iodine value, peroxide value, acid value and 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity) and a potential of being industrially scalable.

Graphical Abstract




Similar content being viewed by others
References
Akanda, M. J. H., Sarker, M. Z. I., Ferdosh, S., Manap, M. Y. A., Ab Rahman, N. N. N., & Ab Kadir, M. O. (2012). Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules, 17(12), 1764–1794. doi:10.3390/molecules17021764.
Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., et al. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 10(1), 31. doi:10.1039/b711717e.
Almario, R. U., & Karakas, S. E. (2013). Lignan content of the flaxseed influences its biological effects in healthy men and women. Journal of the American College of Nutrition, 32(3), 194–199. doi:10.1080/07315724.2013.791147.
Association of Official Analytical Chemists, & Horwitz, W. (2000). Official methods of analysis of AOAC international. AOAC international. Arlington, Va: AOAC International.
Baker, P. (1961). The micro-Kjeldahl determination of nitrogen an investigation of the effects of added salt and catalysts. Talanta, 8(2–3), 57–71. doi:10.1016/0039-9140(61)80040-4.
Bozan, B., & Temelli, F. (2002). Supercritical CO2 extraction of flaxseed. Journal of the American Oil Chemists’ Society, 79(3), 231–235. doi:10.1007/s11746-002-0466-x.
Chaudhari, S.A., Kar, J. R., & Singhal, R. S. (2015). Immobilization of proteins in alginate: functional properties and applications. Current Organic Chemistry, 19, 1732–1754. doi:10.2174/1385272819666150429232110.
Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8(4), 194–204. doi:10.1016/0141-0229(86)90087-6.
Chougle, J. A., Singhal, R. S., & Baik, O. D. (2014). Recovery of astaxanthin from Paracoccus NBRC 101723 using ultrasound-assisted three phase partitioning (UA-TPP). Separation Science and Technology, 49(6), 811–818. doi:10.1080/01496395.2013.872146.
Cvjetko, M., Jokić, S., Lepojević, Ž., Vidović, S., Marić, B., & Radojčić Redovniković, I. (2012). Optimization of the supercritical CO2 extraction of oil from rapeseed using response surface methodology. Food Technology and Biotechnology, 50(2), 208–215.
Dennison, C., & Lovrien, R. (1997). Three phase partitioning: concentration and purification of proteins. Protein Expression and Purification, 11(2), 149–161. doi:10.1006/prep.1997.0779.
Domínguez, H., Núñez, M. J., & Lema, J. M. (1994). Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chemistry, 49(3), 271–286. doi:10.1016/0308-8146(94)90172-4.
Dutta, R., Sarkar, U., & Mukherjee, A. (2015). Process optimization for the extraction of oil from Crotalaria juncea using three phase partitioning. Industrial Crops and Products, 71, 89–96. doi:10.1016/j.indcrop.2015.03.024.
Feng, J., Lei, H., & Ge, F. (2015). Modeling of the extraction process of tea seed oil with supercritical carbon dioxide. Brazilian Journal of Chemical Engineering, 32(4), 941–947. doi:10.1590/0104-6632.20150324s20140252.
Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale roscoe rhizomes. International Journal of Biological Macromolecules, 73, 245–252. doi:10.1016/j.ijbiomac.2014.10.069.
Gopalan, C., Sastri, B. V. R., & Balasubramanian, S. C. (1989). Nutritive value of Indian foods. National Institute of Nutrition, Indian Council of Medical Research. https://books.google.co.in/books?id=biFBAAAAYAAJ
Harde, S. M., Kagliwal, L. D., Singhal, R. S., & Patravale, V. B. (2013). Supercritical fluid extraction of forskolin from Coleus forskohlii roots. Journal of Food Engineering, 117(4), 443–449. doi:10.1016/j.jfoodeng.2012.12.012.
Harde, S. M., & Singhal, R. S. (2012). Extraction of forskolin from Coleus forskohlii roots using three phase partitioning. Separation and Purification Technology, 96, 20–25. doi:10.1016/j.seppur.2012.05.017.
ISI (1986) Methods of sampling and test for oils and fats. IS: 543 Bureau of Indian. Standards. Manak Bhawan, New Delhi.
Kagliwal, L. D., Patil, S. C., Pol, A. S., Singhal, R. S., & Patravale, V. B. (2011). Separation of bioactives from seabuckthorn seeds by supercritical carbon dioxide extraction methodology through solubility parameter approach. Separation and Purification Technology, 80(3), 533–540. doi:10.1016/j.seppur.2011.06.008.
Kagliwal, L. D., Pol, A. S., Patil, S. C., Singhal, R. S., & Patravale, V. B. (2012). Antioxidant-rich extract from dehydrated seabuckthorn berries by supercritical carbon dioxide extraction. Food and Bioprocess Technology, 5(7), 2768–2776. doi:10.1007/s11947-011-0613-8.
Kar, J. R., Hallsworth, J. E., & Singhal, R. S. (2015). Fermentative production of glycine betaine and trehalose from acid whey using Actinopolyspora halophila (MTCC 263). Environmental Technology & Innovation, 3, 68–76. doi:10.1016/j.eti.2015.02.001.
Kar, J. R., & Singhal, R. S. (2015). Investigations on ideal mode of cell disruption in extremely halophilic Actinopolyspora halophila (MTCC 263) for efficient release of glycine betaine and trehalose. Biotechnology Reports, 5, 89–97. doi:10.1016/j.btre.2014.12.005.
Kiss, é., Szamos, J., Tamás, B., & Borbás, R. (1998). Interfacial behavior of proteins in three-phase partitioning using salt-containing water/tert-butanol systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142(2–3), 295–302. doi:10.1016/S0927-7757(98)00361-6.
Kurmudle, N. N., Bankar, S. B., Bajaj, I. B., Bule, M. V., & Singhal, R. S. (2011). Enzyme-assisted three phase partitioning: a novel approach for extraction of turmeric oleoresin. Process Biochemistry, 46(1), 423–426. doi:10.1016/j.procbio.2010.09.010.
Lang, Q. (2001). Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta, 53(4), 771–782. doi:10.1016/S0039-9140(00)00557-9.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. doi:10.1021/ac60147a030.
Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed.). Hoboken, N.J: Wiley.
Mulchandani, K., Kar, J. R., & Singhal, R. S. (2015). Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Applied Biochemistry and Biotechnology, 176, 1613–1626. doi:10.1007/s12010-015-1665-4.
Ondrejovič, M., Chmelová, D., & Maliar, T. (2011). Response surface methodology for optimization of the extraction of flax (Linum usitatissimum) seed oil. Potravinarstvo, 5(4). doi:10.5219/168.
Oomah, B. D. (2001). Flaxseed as a functional food source. Journal of the Science of Food and Agriculture, 81(9), 889–894. doi:10.1002/jsfa.898.
Pakhale, S. V., & Bhagwat, S. S. (2016). Purification of serratiopeptidase from Serratia marcescens NRRL B 23112 using ultrasound assisted three phase partitioning. Ultrasonics Sonochemistry, 31, 532–538. doi:10.1016/j.ultsonch.2016.01.037.
Phongthai, S., & Rawdkuen, S. (2015). Preparation of rice bran protein isolates using three-phase partitioning and its properties. Food and Applied Bioscience Journal, 3(2), 137–149.
Piras, A., Rosa, A., Falconieri, D., Porcedda, S., Dessì, M. A., & Marongiu, B. (2009). Extraction of oil from wheat germ by supercritical CO2. Molecules, 14(7), 2573–2581. doi:10.3390/molecules14072573.
Pradhan, R. C., Meda, V., Rout, P. K., Naik, S., & Dalai, A. K. (2010). Supercritical CO2 extraction of fatty oil from flaxseed and comparison with screw press expression and solvent extraction processes. Journal of Food Engineering, 98(4), 393–397. doi:10.1016/j.jfoodeng.2009.11.021.
Reverchon, E., & Marrone, C. (2001). Modeling and simulation of the supercritical CO2 extraction of vegetable oils. The Journal of Supercritical Fluids, 19(2), 161–175. doi:10.1016/S0896-8446(00)00093-0.
Rodrigues, C. E. C., Goncalves, C. B., Batista, E., & Meirelles, A. J. A. (2007). Deacidification of vegetable oils by solvent extraction. Recent Patents on Engineering, 1(1), 95–102. doi:10.2174/187221207779814699.
Sagu, S. T., Nso, E. J., Homann, T., Kapseu, C., & Rawel, H. M. (2015). Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning. Food Chemistry, 183, 144–153. doi:10.1016/j.foodchem.2015.03.028.
Shah, S., Sharma, A., & Gupta, M. N. (2004). Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Industrial Crops and Products, 20(3), 275–279. doi:10.1016/j.indcrop.2003.10.010.
Sharma, A., Khare, S. K., & Gupta, M. N. (2002). Three phase partitioning for extraction of oil from soybean. Bioresource Technology, 85(3), 327–329. doi:10.1016/S0960-8524(02)00138-4.
Shim, Y. Y., Gui, B., Arnison, P. G., Wang, Y., & Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends in Food Science & Technology, 38(1), 5–20. doi:10.1016/j.tifs.2014.03.011.
Siger, A., Nogala-Kalucka, M., & Lampart-Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137–149. doi:10.1111/j.1745-4522.2007.00107.x.
Tan, Z., Yang, Z., Yi, Y., Wang, H., Zhou, W., Li, F., & Wang, C. (2016). Extraction of oil from flaxseed (Linum usitatissimum L.) using enzyme-assisted three-phase partitioning. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2068-x.
Varakumar, S., Umesh, K. V., & Singhal, R. S. (2017). Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 216, 27–36. doi:10.1016/j.foodchem.2016.07.180.
Vetal, M. D., & Rathod, V. K. (2015). Three phase partitioning a novel technique for purification of peroxidase from orange peels (Citrus sinenses). Food and Bioproducts Processing, 94, 284–289. doi:10.1016/j.fbp.2014.03.007.
Vidhate, G. S., & Singhal, R. S. (2013). Extraction of cocoa butter alternative from kokum (Garcinia indica) kernel by three phase partitioning. Journal of Food Engineering, 117(4), 464–466. doi:10.1016/j.jfoodeng.2012.10.051.
Wanasundara, P. K. J. P. D., Shahidi, F., & Shukla, V. K. S. (1997). Endogenous antioxidants from oilseeds and edible oils. Food Reviews International, 13(2), 225–292. doi:10.1080/87559129709541106.
Zhang, Y. H. P., Hong, J., & Ye, X. (2009). Cellulase assays. In J. R. Mielenz (Ed.), Biofuels (Vol. 581, pp. 213–231). Totowa, NJ: Humana Press http://link.springer.com/10.1007/978-1-60761-214-8_14. Accessed 7 September 2015.
Acknowledgements
First author Nikhil G Kulkarni is grateful to Technical Education Quality Improvement Programme (TEQIP), Government of India, and assisted by World Bank for their financial support in carrying out this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kulkarni, N.G., Kar, J.R. & Singhal, R.S. Extraction of Flaxseed Oil: A Comparative Study of Three-Phase Partitioning and Supercritical Carbon Dioxide Using Response Surface Methodology. Food Bioprocess Technol 10, 940–948 (2017). https://doi.org/10.1007/s11947-017-1877-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-017-1877-4


