Skip to main content

Advertisement

Log in

Extraction of Flaxseed Oil: A Comparative Study of Three-Phase Partitioning and Supercritical Carbon Dioxide Using Response Surface Methodology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Flaxseed has gained significant interest as a source of edible oil that is rich in omega-3 fatty acids, high content of flaxseed proteins and lignans that are known to be therapeutic. Low oxidative stability of flaxseed oil necessitates the use of extraction technologies that are advanced and economically viable than the currently used cold press extraction. This work compares the yield and quality of the flaxseed oil obtained by individually optimized supercritical carbon dioxide extraction (SCE), three-phase partitioning (TPP), solvent extraction and the reported values of cold press extraction. The yields of oil obtained were comparable for SCE (30.03% w/w), TPP (22.46% w/w), ultrasonic pre-treated TPP (27.05% w/w), enzyme-pre-treated TPP (26.24% w/w) and reported value of 25.50% w/w in commercial screw-press expeller but lower than solvent extraction (41.53% w/w). Amongst the techniques evaluated, enzyme-pre-treated TPP using Accellerase® is recommended due to excellent protein recovery of 86.62%, better oil quality (iodine value, peroxide value, acid value and 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity) and a potential of being industrially scalable.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akanda, M. J. H., Sarker, M. Z. I., Ferdosh, S., Manap, M. Y. A., Ab Rahman, N. N. N., & Ab Kadir, M. O. (2012). Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules, 17(12), 1764–1794. doi:10.3390/molecules17021764.

    Article  CAS  Google Scholar 

  • Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., et al. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 10(1), 31. doi:10.1039/b711717e.

    Article  CAS  Google Scholar 

  • Almario, R. U., & Karakas, S. E. (2013). Lignan content of the flaxseed influences its biological effects in healthy men and women. Journal of the American College of Nutrition, 32(3), 194–199. doi:10.1080/07315724.2013.791147.

    Article  CAS  Google Scholar 

  • Association of Official Analytical Chemists, & Horwitz, W. (2000). Official methods of analysis of AOAC international. AOAC international. Arlington, Va: AOAC International.

    Google Scholar 

  • Baker, P. (1961). The micro-Kjeldahl determination of nitrogen an investigation of the effects of added salt and catalysts. Talanta, 8(2–3), 57–71. doi:10.1016/0039-9140(61)80040-4.

    Article  CAS  Google Scholar 

  • Bozan, B., & Temelli, F. (2002). Supercritical CO2 extraction of flaxseed. Journal of the American Oil Chemists’ Society, 79(3), 231–235. doi:10.1007/s11746-002-0466-x.

    Article  CAS  Google Scholar 

  • Chaudhari, S.A., Kar, J. R., & Singhal, R. S. (2015). Immobilization of proteins in alginate: functional properties and applications. Current Organic Chemistry, 19, 1732–1754. doi:10.2174/1385272819666150429232110.

  • Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8(4), 194–204. doi:10.1016/0141-0229(86)90087-6.

    Article  CAS  Google Scholar 

  • Chougle, J. A., Singhal, R. S., & Baik, O. D. (2014). Recovery of astaxanthin from Paracoccus NBRC 101723 using ultrasound-assisted three phase partitioning (UA-TPP). Separation Science and Technology, 49(6), 811–818. doi:10.1080/01496395.2013.872146.

    Article  CAS  Google Scholar 

  • Cvjetko, M., Jokić, S., Lepojević, Ž., Vidović, S., Marić, B., & Radojčić Redovniković, I. (2012). Optimization of the supercritical CO2 extraction of oil from rapeseed using response surface methodology. Food Technology and Biotechnology, 50(2), 208–215.

    CAS  Google Scholar 

  • Dennison, C., & Lovrien, R. (1997). Three phase partitioning: concentration and purification of proteins. Protein Expression and Purification, 11(2), 149–161. doi:10.1006/prep.1997.0779.

    Article  CAS  Google Scholar 

  • Domínguez, H., Núñez, M. J., & Lema, J. M. (1994). Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chemistry, 49(3), 271–286. doi:10.1016/0308-8146(94)90172-4.

    Article  Google Scholar 

  • Dutta, R., Sarkar, U., & Mukherjee, A. (2015). Process optimization for the extraction of oil from Crotalaria juncea using three phase partitioning. Industrial Crops and Products, 71, 89–96. doi:10.1016/j.indcrop.2015.03.024.

    Article  CAS  Google Scholar 

  • Feng, J., Lei, H., & Ge, F. (2015). Modeling of the extraction process of tea seed oil with supercritical carbon dioxide. Brazilian Journal of Chemical Engineering, 32(4), 941–947. doi:10.1590/0104-6632.20150324s20140252.

    Article  Google Scholar 

  • Gagaoua, M., Hoggas, N., & Hafid, K. (2015). Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale roscoe rhizomes. International Journal of Biological Macromolecules, 73, 245–252. doi:10.1016/j.ijbiomac.2014.10.069.

    Article  CAS  Google Scholar 

  • Gopalan, C., Sastri, B. V. R., & Balasubramanian, S. C. (1989). Nutritive value of Indian foods. National Institute of Nutrition, Indian Council of Medical Research. https://books.google.co.in/books?id=biFBAAAAYAAJ

  • Harde, S. M., Kagliwal, L. D., Singhal, R. S., & Patravale, V. B. (2013). Supercritical fluid extraction of forskolin from Coleus forskohlii roots. Journal of Food Engineering, 117(4), 443–449. doi:10.1016/j.jfoodeng.2012.12.012.

    Article  CAS  Google Scholar 

  • Harde, S. M., & Singhal, R. S. (2012). Extraction of forskolin from Coleus forskohlii roots using three phase partitioning. Separation and Purification Technology, 96, 20–25. doi:10.1016/j.seppur.2012.05.017.

    Article  CAS  Google Scholar 

  • ISI (1986) Methods of sampling and test for oils and fats. IS: 543 Bureau of Indian. Standards. Manak Bhawan, New Delhi.

  • Kagliwal, L. D., Patil, S. C., Pol, A. S., Singhal, R. S., & Patravale, V. B. (2011). Separation of bioactives from seabuckthorn seeds by supercritical carbon dioxide extraction methodology through solubility parameter approach. Separation and Purification Technology, 80(3), 533–540. doi:10.1016/j.seppur.2011.06.008.

    Article  CAS  Google Scholar 

  • Kagliwal, L. D., Pol, A. S., Patil, S. C., Singhal, R. S., & Patravale, V. B. (2012). Antioxidant-rich extract from dehydrated seabuckthorn berries by supercritical carbon dioxide extraction. Food and Bioprocess Technology, 5(7), 2768–2776. doi:10.1007/s11947-011-0613-8.

    Article  CAS  Google Scholar 

  • Kar, J. R., Hallsworth, J. E., & Singhal, R. S. (2015). Fermentative production of glycine betaine and trehalose from acid whey using Actinopolyspora halophila (MTCC 263). Environmental Technology & Innovation, 3, 68–76. doi:10.1016/j.eti.2015.02.001.

    Article  Google Scholar 

  • Kar, J. R., & Singhal, R. S. (2015). Investigations on ideal mode of cell disruption in extremely halophilic Actinopolyspora halophila (MTCC 263) for efficient release of glycine betaine and trehalose. Biotechnology Reports, 5, 89–97. doi:10.1016/j.btre.2014.12.005.

    Article  Google Scholar 

  • Kiss, é., Szamos, J., Tamás, B., & Borbás, R. (1998). Interfacial behavior of proteins in three-phase partitioning using salt-containing water/tert-butanol systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142(2–3), 295–302. doi:10.1016/S0927-7757(98)00361-6.

    Article  CAS  Google Scholar 

  • Kurmudle, N. N., Bankar, S. B., Bajaj, I. B., Bule, M. V., & Singhal, R. S. (2011). Enzyme-assisted three phase partitioning: a novel approach for extraction of turmeric oleoresin. Process Biochemistry, 46(1), 423–426. doi:10.1016/j.procbio.2010.09.010.

    Article  CAS  Google Scholar 

  • Lang, Q. (2001). Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta, 53(4), 771–782. doi:10.1016/S0039-9140(00)00557-9.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. doi:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed.). Hoboken, N.J: Wiley.

    Google Scholar 

  • Mulchandani, K., Kar, J. R., & Singhal, R. S. (2015). Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Applied Biochemistry and Biotechnology, 176, 1613–1626. doi:10.1007/s12010-015-1665-4.

    Article  CAS  Google Scholar 

  • Ondrejovič, M., Chmelová, D., & Maliar, T. (2011). Response surface methodology for optimization of the extraction of flax (Linum usitatissimum) seed oil. Potravinarstvo, 5(4). doi:10.5219/168.

  • Oomah, B. D. (2001). Flaxseed as a functional food source. Journal of the Science of Food and Agriculture, 81(9), 889–894. doi:10.1002/jsfa.898.

    Article  CAS  Google Scholar 

  • Pakhale, S. V., & Bhagwat, S. S. (2016). Purification of serratiopeptidase from Serratia marcescens NRRL B 23112 using ultrasound assisted three phase partitioning. Ultrasonics Sonochemistry, 31, 532–538. doi:10.1016/j.ultsonch.2016.01.037.

    Article  CAS  Google Scholar 

  • Phongthai, S., & Rawdkuen, S. (2015). Preparation of rice bran protein isolates using three-phase partitioning and its properties. Food and Applied Bioscience Journal, 3(2), 137–149.

    Google Scholar 

  • Piras, A., Rosa, A., Falconieri, D., Porcedda, S., Dessì, M. A., & Marongiu, B. (2009). Extraction of oil from wheat germ by supercritical CO2. Molecules, 14(7), 2573–2581. doi:10.3390/molecules14072573.

    Article  Google Scholar 

  • Pradhan, R. C., Meda, V., Rout, P. K., Naik, S., & Dalai, A. K. (2010). Supercritical CO2 extraction of fatty oil from flaxseed and comparison with screw press expression and solvent extraction processes. Journal of Food Engineering, 98(4), 393–397. doi:10.1016/j.jfoodeng.2009.11.021.

    Article  CAS  Google Scholar 

  • Reverchon, E., & Marrone, C. (2001). Modeling and simulation of the supercritical CO2 extraction of vegetable oils. The Journal of Supercritical Fluids, 19(2), 161–175. doi:10.1016/S0896-8446(00)00093-0.

    Article  CAS  Google Scholar 

  • Rodrigues, C. E. C., Goncalves, C. B., Batista, E., & Meirelles, A. J. A. (2007). Deacidification of vegetable oils by solvent extraction. Recent Patents on Engineering, 1(1), 95–102. doi:10.2174/187221207779814699.

    Article  CAS  Google Scholar 

  • Sagu, S. T., Nso, E. J., Homann, T., Kapseu, C., & Rawel, H. M. (2015). Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning. Food Chemistry, 183, 144–153. doi:10.1016/j.foodchem.2015.03.028.

    Article  CAS  Google Scholar 

  • Shah, S., Sharma, A., & Gupta, M. N. (2004). Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Industrial Crops and Products, 20(3), 275–279. doi:10.1016/j.indcrop.2003.10.010.

    Article  CAS  Google Scholar 

  • Sharma, A., Khare, S. K., & Gupta, M. N. (2002). Three phase partitioning for extraction of oil from soybean. Bioresource Technology, 85(3), 327–329. doi:10.1016/S0960-8524(02)00138-4.

    Article  CAS  Google Scholar 

  • Shim, Y. Y., Gui, B., Arnison, P. G., Wang, Y., & Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends in Food Science & Technology, 38(1), 5–20. doi:10.1016/j.tifs.2014.03.011.

    Article  CAS  Google Scholar 

  • Siger, A., Nogala-Kalucka, M., & Lampart-Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137–149. doi:10.1111/j.1745-4522.2007.00107.x.

    Article  CAS  Google Scholar 

  • Tan, Z., Yang, Z., Yi, Y., Wang, H., Zhou, W., Li, F., & Wang, C. (2016). Extraction of oil from flaxseed (Linum usitatissimum L.) using enzyme-assisted three-phase partitioning. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2068-x.

    Google Scholar 

  • Varakumar, S., Umesh, K. V., & Singhal, R. S. (2017). Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme-assisted three phase partitioning. Food Chemistry, 216, 27–36. doi:10.1016/j.foodchem.2016.07.180.

    Article  CAS  Google Scholar 

  • Vetal, M. D., & Rathod, V. K. (2015). Three phase partitioning a novel technique for purification of peroxidase from orange peels (Citrus sinenses). Food and Bioproducts Processing, 94, 284–289. doi:10.1016/j.fbp.2014.03.007.

    Article  CAS  Google Scholar 

  • Vidhate, G. S., & Singhal, R. S. (2013). Extraction of cocoa butter alternative from kokum (Garcinia indica) kernel by three phase partitioning. Journal of Food Engineering, 117(4), 464–466. doi:10.1016/j.jfoodeng.2012.10.051.

    Article  CAS  Google Scholar 

  • Wanasundara, P. K. J. P. D., Shahidi, F., & Shukla, V. K. S. (1997). Endogenous antioxidants from oilseeds and edible oils. Food Reviews International, 13(2), 225–292. doi:10.1080/87559129709541106.

    Article  CAS  Google Scholar 

  • Zhang, Y. H. P., Hong, J., & Ye, X. (2009). Cellulase assays. In J. R. Mielenz (Ed.), Biofuels (Vol. 581, pp. 213–231). Totowa, NJ: Humana Press http://link.springer.com/10.1007/978-1-60761-214-8_14. Accessed 7 September 2015.

    Chapter  Google Scholar 

Download references

Acknowledgements

First author Nikhil G Kulkarni is grateful to Technical Education Quality Improvement Programme (TEQIP), Government of India, and assisted by World Bank for their financial support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaranjan R Kar.

Electronic Supplementary Material

Table S1

(PDF 113 kb)

Table S2

(PDF 106 kb)

Table S3

(PDF 117 kb)

Table S4

(PDF 108 kb)

Fig S1

(PDF 105 kb)

Fig S2

(PDF 96 kb)

Fig S3

(PDF 90 kb)

Fig S4

(PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, N.G., Kar, J.R. & Singhal, R.S. Extraction of Flaxseed Oil: A Comparative Study of Three-Phase Partitioning and Supercritical Carbon Dioxide Using Response Surface Methodology. Food Bioprocess Technol 10, 940–948 (2017). https://doi.org/10.1007/s11947-017-1877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1877-4

Keywords