Skip to main content
Log in

Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the efficacy of high voltage atmospheric cold plasma (HVACP) treatment on degradation of aflatoxin in corn. Gas type (Air, MA65), relative humidity (5, 40, 80% RH), treatment time (1, 2, 5, 10, 20,and 30 min), mode of reaction, post-treatment storage, stirring of corn material were parameters investigated on degradation of aflatoxin by HVACP treatment. Generation of reactive gas species was characterized with optical emission spectroscopy and measured with dragger tubes. Generation of reactive gas species are influence by gas type and relative humidity. Higher concentration of ozone and NOx were generated during HVACP treatment in MA65 than in air and with lower relative humidity. Aflatoxin in corn could be rapidly degraded by HVACP treatment. Aflatoxin in corn was degraded by 62% and 82% by 1 and 10 min HVACP treatment in RH 40% air, respectively. The degradation kinetics of aflatoxin by HVACP treatment follows a logistic model. Higher degradation of aflatoxin was achieved in gas MA65, at higher relative humidities (40%, 80%). Direct or indirect HVACP treatment was equally effective in degrading aflatoxin in corn. Stirring the corn sample during HVACP treatment and post-treatment storage increased aflatoxin degradation in corn by HVACP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Basaran, P., Basaran-Akgul, N., & Oksuz, L. (2008). Elimination of aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiology, 25(4), 626–632.

    Article  CAS  Google Scholar 

  • Chen, H., & Hoover, D. G. (2004). Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott a in whole milk. Innovative Food Science & Emerging Technologies, 5(3), 269–276.

    Article  CAS  Google Scholar 

  • Chen, R., Ma, F., Li, P. W., Zhang, W., Ding, X. X., Zhang, Q., Li, M., Wang, Y. R., & Xu, B. C. (2014). Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts. Food Chemistry, 146, 284–288.

    Article  CAS  Google Scholar 

  • Connolly, J., V. P. Valdramidis, E. Byrne, K. A. Karatzas, P. J. Cullen, K. M. Keener and J. P. Mosnier (2013). "Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package." Journal of Physics D-Applied Physics 46(3).

  • David, G. S. and P. M. Gary. (2012). "Mycotoxins in Crops: A Threat to Human and Domestic Animal Health." Retrieved 0315, 2016, from http://www.apsnet.org/edcenter/intropp/topics/Mycotoxins/Pages/EconomicImpact.aspx.

  • Diao, E. J., Hou, H. X., & Dong, H. Z. (2013). Ozonolysis mechanism and influencing factors of aflatoxin B-1: a review. Trends in Food Science & Technology, 33(1), 21–26.

    Article  CAS  Google Scholar 

  • Groopman, J. D., Cain, L. G., & Kensler, T. W. (1988). Aflatoxin exposure in human-populations - measurements and relationship to cancer. CRC Critical Reviews in Toxicology, 19(2), 113–145.

    Article  CAS  Google Scholar 

  • Keener, K. and J. L. Jensen (2014). Generation of microbiocide inside a package utilizing a controlled gas composition, Google Patents.

  • Khlangwiset, P., Shephard, G. S., & Wu, F. (2011). Aflatoxins and growth impairment: a review. Critical Reviews in Toxicology, 41(9), 740–755.

    Article  CAS  Google Scholar 

  • Klockow, P. A., & Keener, K. M. (2009). Safety and quality assessment of packaged spinach treated with a novel ozone-generation system. Lwt-Food Science and Technology, 42(6), 1047–1053.

    Article  CAS  Google Scholar 

  • Laroussi, M., & Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1–3), 81–86.

    Article  CAS  Google Scholar 

  • Laux, C. O., Spence, T. G., Kruger, C. H., & Zare, R. N. (2003). Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science & Technology, 12(2), 125–138.

    Article  CAS  Google Scholar 

  • Luo, X. H., Wang, R., Wang, L., Li, Y. F., Bian, Y. Y., & Chen, Z. X. (2014). Effect of ozone treatment on aflatoxin B-1 and safety evaluation of ozonized corn. Food Control, 37, 171–176.

    Article  CAS  Google Scholar 

  • McClurkin-Moore, J. D. (2015). Shelf-life improvement of distillers wet grains with solubles. PhD. Diss. Purdue University, West Lafayette, Indiana, 2015. Dissertation & Thesis @ CIC Institutions, ProQuest.

  • McDonough, M. X., Campabadal, C. A., Mason, L. J., Maier, D. E., Denvir, A., & Woloshuk, C. (2011). Ozone application in a modified screw conveyor to treat grain for insect pests, fungal contaminants, and mycotoxins. Journal of Stored Products Research, 47(3), 249–254.

    Article  CAS  Google Scholar 

  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3(3–4), 159–170.

    Article  Google Scholar 

  • Misra, N. N., Ziuzina, D., Cullen, P. J., & Keener, K. M. (2013). Characterization of a novel atmospheric air cold plasma system for treatment of packaged biomaterials. Transactions of the ASABE, 56(3), 1011–1016.

    CAS  Google Scholar 

  • Moiseev, T., N. N. Misra, S. Patil, P. J. Cullen, P. Bourke, K. M. Keener and J. P. Mosnier (2014). "Post-discharge gas composition of a large-gap DBD in humid air by UV-Vis absorption spectroscopy." Plasma Sources Science & Technology 23(6).

  • Mueller, F. X., Loeb, L., & Mapes, W. H. (1973). Decomposition rates of ozone in living areas. Environmental Science & Technology, 7(4), 342–346.

    Article  CAS  Google Scholar 

  • NGFA. (2011). FDA mycotoxin guidance. A guide for grina elevators, feed manufacturers, grain processor, and exporters. Washington, D.C.: National Grain and Fee Association.

    Google Scholar 

  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3(3), 125–142.

    Article  CAS  Google Scholar 

  • Pankaj, S. K., Misra, N. N., & Cullen, P. J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies, 19, 153–157.

    Article  CAS  Google Scholar 

  • Parigger, C. G., Guan, G., & Hornkohl, J. O. (2003). Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air. Applied Optics, 42(30), 5986–5991.

    Article  CAS  Google Scholar 

  • Park, B. J., Takatori, K., Sugita-Konishi, Y., Kim, I. H., Lee, M. H., Han, D. W., Chung, K. H., Hyun, S. O., & Park, J. C. (2007). Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surface & Coatings Technology, 201(9–11), 5733–5737.

    Article  CAS  Google Scholar 

  • Piva, G., Galvano, F., Pietri, A., & Piva, A. (1995). Detoxification methods of aflatoxins - a review. Nutrition Research, 15(5), 767–776.

    Article  CAS  Google Scholar 

  • Rustom, I. Y. S. (1997). Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chemistry, 59(1), 57–67.

    Article  CAS  Google Scholar 

  • Samarajeewa, U., Sen, A. C., Cohen, M. D., & Wei, C. I. (1990). Detoxification of aflatoxins in foods and feeds by physical and chemical methods. Journal of Food Protection, 53(6), 489–501.

    Article  CAS  Google Scholar 

  • Schaffner, D. W., & Labuza, T. P. (1997). Predictive microbiology: where are we, and where are we going? Food Technology, 51(4), 95–99.

    Google Scholar 

  • Schluter, O., Ehlbeck, J., Hertel, C., Habermeyer, M., Roth, A., Engel, K. H., Holzhauser, T., Knorr, D., & Eisenbrand, G. (2013). Opinion on the use of plasma processes for treatment of foods*. Molecular Nutrition & Food Research, 57(5), 920–927.

    Article  Google Scholar 

  • Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104–5109.

    Article  CAS  Google Scholar 

  • Shi, H., Stroshine, R. L., & Ileleji, K. (2014). Aflatoxin reduction in corn by cleaning and sorting. Montreal, CA: 2014 ASABE internal annual meeting.

    Google Scholar 

  • Shin, D. N., Park, C. W., & Hahn, J. W. (2000). Detection of OH(a(2)sigma(+)) and O(D-1) emission spectrum generated in a pulsed corona plasma. Bulletin of the Korean Chemical Society, 21(2), 228–232.

    CAS  Google Scholar 

  • Staehelin, J., & Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science & Technology, 19(12), 1206–1213.

    Article  CAS  Google Scholar 

  • Surowsky, B., O. Schlüter and D. Knorr (2014). "Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review." Food Engineering Reviews: 1–27.

  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal Technology for Food Processing. Food Biophysics, 10(1), 1–11.

    Article  Google Scholar 

  • van Boekel, M. A. J. S. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1–2), 139–159.

    Article  Google Scholar 

  • Virdi, J. S., Tiwari, R. P., Saxena, M., Khanna, V., Singh, G., Saini, S. S., & Vadehra, D. V. (1989). Effects of aflatoxin on the immune-system of the Chick. Journal of Applied Toxicology, 9(4), 271–275.

    Article  CAS  Google Scholar 

  • Wang, S., Liu, H., Lin, J., & Cao, Y. (2010). Can ozone fumigation effectively reduce aflatoxin B1 and other mycotoxins contamination on stored grain? 10th international working conference on stored product protection. Julius-Kühn-Archiv., 425, 582–588.

    Google Scholar 

  • Wu, Q., Jezkova, A., Yuan, Z., Pavlikova, L., Dohnal, V., & Kuca, K. (2009). Biological degradation of aflatoxins. Drug Metabolism Reviews, 41(1), 1–7.

    Article  Google Scholar 

  • Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. Journal of Applied Microbiology, 114(3), 778–787.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by a 2010 Team Award from the NC-213 Anderson Research Grant Program, entitled “Reduction of Mycotoxin Levels in Distillers Grains”. The authors would like to thank Purdue ACRE farm for providing the corn sample in this study. The authors are also grateful for Mrs. Zifan Wan for assistance with the HVACP system and optical emission spectra experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klein Ileleji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Ileleji, K., Stroshine, R.L. et al. Reduction of Aflatoxin in Corn by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol 10, 1042–1052 (2017). https://doi.org/10.1007/s11947-017-1873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1873-8

Keywords

Navigation