Food and Bioprocess Technology

, Volume 10, Issue 5, pp 808–818 | Cite as

Impact of Thermal and Pressure-Based Technologies on Carotenoid Retention and Quality Attributes in Tomato Juice

  • Bing Yan
  • Sergio I. Martínez-Monteagudo
  • Jessica L. Cooperstone
  • Ken M. Riedl
  • Steven J. Schwartz
  • V . M. BalasubramaniamEmail author
Original Paper


The aim of this study was to investigate the impact of thermal processing (TP) (90 °C, 90 s), high-pressure processing (HPP) (600 MPa, 46 °C, 5 min), and high-pressure homogenization (HPH) (246 MPa, 99 °C, <1 s) on product quality parameters, specifically carotenoid content, and physicochemical attributes of particle size, color, viscosity, total soluble solids, and pH in tomato juice. Unprocessed tomato juice was used as control. The four major species of carotenoids (lycopene, β-carotene, phytoene, and phytofluene) in tomato juice were analyzed by HPLC. The content of total lycopene, all-trans-lycopene, cis-lycopene isomers,  phytoene, and phytofluene, in TP-, HPP-, and HPH-treated tomato juice did not significantly differ from that in unprocessed (control) juice. Significant reduction in β-carotene content was observed after TP treatment but not after HPP and HPH treatments. HPH significantly reduced tomato juice particle volume mean diameter from ∼330 μm in control, HPP-, and TP-treated tomato juices to ∼17 μm. A concomitant increase in apparent viscosity was observed in HPH-treated juice versus control. HPH-treated juice had increased redness (a*) and yellowness (b*) than that in control and HPP-treated tomato juices. These results indicate that high-pressure-based technologies (HPP and HPH) can preserve carotenoids as well as improve physicochemical properties.


High-pressure homogenization High-pressure processing Thermal treatment Tomato juice Carotenoids 



Research support was partially provided by Center for Advanced Processing and Packaging Studies. The author Bing Yan gratefully acknowledges financial support provided by China Scholarship Council and The Ohio State University Graduate School for doctoral study. References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University is implied.


  1. AOAC International (2005). Official methods of analysis of AOAC International (18th ed.). Gaithersburg, MD, USA.Google Scholar
  2. Augusto, P. E. D., Ibarz, A., & Cristianini, M. (2012). Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: time-dependent and steady-state shear. Journal of Food Engineering, 111(4), 570–579.CrossRefGoogle Scholar
  3. Balasubramaniam, V. M., Martínez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science and Technology, 6(1), 435–462.CrossRefGoogle Scholar
  4. Balasubramaniam, V. M., Ting, E. Y., Stewart, C. M., & Robbins, J. A. (2004). Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innovative Food Science & Emerging Technologies, 5(3), 299–306.CrossRefGoogle Scholar
  5. Bayod, E., Månsson, P., Innings, F., Bergenståhl, B., & Tornberg, E. (2007). Low shear rheology of concentrated tomato products. Effect of particle size and time. Food Biophysics, 2(4), 146–157.CrossRefGoogle Scholar
  6. Bengtsson, H., & Tornberg, E. (2011). Physicochemical characterization of fruit and vegetable fiber suspensions. I: effect of homogenization. Journal of Texture Studies, 42(4), 268–280.CrossRefGoogle Scholar
  7. Britton, G. (1995). Structure and properties of carotenoids in relation to function. FASEB Journal :Official Publication of the Federation of American Societies for Experimental Biology, 9(15), 1551–1558.Google Scholar
  8. Burton-Freeman, B. M., & Sesso, H. D. (2014). Whole food versus supplement: comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Advances in Nutrition: An International Review Journal, 5(5), 457–485.CrossRefGoogle Scholar
  9. Clinton, S. K. (1998). Lycopene: chemistry, biology, and implications for human health and disease. Nutrition Reviews, 56(2 Pt 1), 35–51.Google Scholar
  10. Colle, I., Van Buggenhout, S., Van Loey, A., & Hendrickx, M. (2010). High pressure homogenization followed by thermal processing of tomato pulp: influence on microstructure and lycopene in vitro bioaccessibility. Food Research International, 43(8), 2193–2200.CrossRefGoogle Scholar
  11. Cooperstone, J. L., Francis, D. M., & Schwartz, S. J. (2016). Thermal processing differentially affects lycopene and other carotenoids in cis- lycopene containing, tangerine tomatoes. Food Chemistry, 210, 466–472Google Scholar
  12. Cooperstone, J. L., Ralston, R. A., Riedl, K. M., Haufe, T. C., Schweiggert, R. M., King, S. A., Timmers, C. D., Francis, D. M., Lesinski, G. B., Clinton, S. K., & Schwartz, S. J. (2015). Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Molecular Nutrition & Food Research, 59(4), 658–669.CrossRefGoogle Scholar
  13. Crelier, S., Robert, M. C., Claude, J., & Juillerat, M. A. (2001). Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. Journal of Agricultural and Food Chemistry, 49(11), 5566–5575.CrossRefGoogle Scholar
  14. Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology, 31(1), 13–26.CrossRefGoogle Scholar
  15. Duvetter, T., Sila, D. N., Van Buggenhout, S., Jolie, R., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruit and vegetables: part I—stability and catalytic activity of pectinases. Comprehensive Reviews in Food Science and Food Safety, 8(2), 75–85.CrossRefGoogle Scholar
  16. Engelmann, N. J., Clinton, S. K., & Erdman, J. W. (2011). Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Advances in Nutrition: An International Review Journal, 2(1), 51–61.CrossRefGoogle Scholar
  17. Fernandez Garcia, A., Butz, P., & Tauscher, B. (2001). Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose diffusion, and water binding of tomato puree (Lycopersicon esculentum Mill.). Journal of Food Science, 66(7), 1033–1038.CrossRefGoogle Scholar
  18. Giner, M. J., Hizarci, Õ., Martí, N., Saura, D., & Valero, M. (2013). Novel approaches to reduce brown pigment formation and color changes in thermal pasteurized tomato juice. European Food Research and Technology, 236(3), 507–515.CrossRefGoogle Scholar
  19. Graziani, G., Pernice, R., Lanzuise, S., Vitaglione, P., Anese, M., & Fogliano, V. (2003). Effect of peeling and heating on carotenoid content and antioxidant activity of tomato and tomato-virgin olive oil systems. European Food Research and Technology, 216, 116–121.CrossRefGoogle Scholar
  20. Gupta, R., Kopec, R. E., Schwartz, S. J., & Balasubramaniam, V. M. (2011). Combined pressure–temperature effects on carotenoid retention and bioaccessibility in tomato juice. Journal of Agricultural and Food Chemistry, 59(14), 7808–7817.CrossRefGoogle Scholar
  21. Hart, D. J., & Scott, K. J. (1995). Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chemistry, 54(1), 101–111.CrossRefGoogle Scholar
  22. Hsu, K. C., Tan, F. J., & Chi, H. Y. (2008). Evaluation of microbial inactivation and physicochemical properties of pressurized tomato juice during refrigerated storage. LWT - Food Science and Technology, 41(3), 367–375.CrossRefGoogle Scholar
  23. Jha, S. N. (2010). Colour measurements and modeling. In S. N. Jha (Ed.), Nondestructive evaluation of food quality: theory and practice (pp. 17–40). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  24. Jolie, R. P., Christiaens, S., De Roeck, A., Fraeye, I., Houben, K., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2012). Pectin conversions under high pressure: implications for the structure-related quality characteristics of plant-based foods. Trends in Food Science & Technology, 24(2), 103–118.CrossRefGoogle Scholar
  25. Khachik, F., Carvalho, L., Bernstein, P. S., Muir, G. J., Zhao, D. Y., & Katz, N. B. (2002). Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Experimental Biology and Medicine, 227(10), 845–851.CrossRefGoogle Scholar
  26. Kopec, R. E., Riedl, K. M., Harrison, E. H., Curley Jr., R. W., Hruszkewycz, D. P., Clinton, S. K., & Schwartz, S. J. (2010). Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. Journal of Agricultural and Food Chemistry, 58(6), 3290–3296.CrossRefGoogle Scholar
  27. Kopec, R. E., Cooperstone, J. L., Schweiggert, R. M., Young, G. S., Harrison, E. H., Francis, D. M., Clinton, S. K., & Schwartz, S. J. (2014). Avocado consumption enhances human postprandial provitamin A absorption and conversion from a novel high-β-carotene tomato sauce and from carrots. Journal of Nutrition, 144(8), 1158–1166.CrossRefGoogle Scholar
  28. Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M., & van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies, 4(4), 377–385.CrossRefGoogle Scholar
  29. Kubo, M. T. K., Augusto, P. E. D., & Cristianini, M. (2013). Effect of high pressure homogenization (HPH) on the physical stability of tomato juice. Food Research International, 51(1), 170–179.CrossRefGoogle Scholar
  30. Linton, M., McClements, J. M. J., & Patterson, M. F. (1999). Inactivation of Escherichia coli O157:H7 in orange juice using a combination of high pressure and mild heat. Journal of Food Protection, 62, 277–279.CrossRefGoogle Scholar
  31. Lopez-Sanchez, P., Chapara, V., Schumm, S., & Farr, R. (2012). Shear elastic deformation and particle packing in plant cell dispersions. Food Biophysics, 7(1), 1–14.CrossRefGoogle Scholar
  32. Lopez-Sanchez, P., Nijsse, J., Blonk, H. C. G., Bialek, L., Schumm, S., & Langton, M. (2011). Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 91(2), 207–217.CrossRefGoogle Scholar
  33. Meléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A., & Stinco, C. M. (2015). A comprehensive review on the colorless carotenoids phytoene and phytofluene. Archives of Biochemistry and Biophysics, 572, 188–200.CrossRefGoogle Scholar
  34. Meléndez-Martínez, A. J., Paulino, M., Stinco, C. M., Mapelli-Brahm, P., & Wang, X. (2014). Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato. Journal of Agricultural and Food Chemistry, 62(51), 12399–12406.CrossRefGoogle Scholar
  35. Min, S., Jin, Z. T., & Zhang, Q. H. (2003). Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 51(11), 3338–3344.CrossRefGoogle Scholar
  36. Moelants, K. R. N., Cardinaels, R., Van Buggenhout, S., Van Loey, A. M., Moldenaers, P., & Hendrickx, M. E. (2014). A review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Comprehensive Reviews in Food Science and Food Safety, 13(3), 241–260.CrossRefGoogle Scholar
  37. Nguyen, M., Francis, D., & Schwartz, S. (2001). Thermal isomerisation susceptibility of carotenoids in different tomato varieties. Journal of the Science of Food and Agriculture, 81(9), 910–917.CrossRefGoogle Scholar
  38. Panozzo, A., Lemmens, L., Van Loey, A., Manzocco, L., Nicoli, M. C., & Hendrickx, M. (2013). Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes. Food Chemistry, 141(4), 4094–4100.CrossRefGoogle Scholar
  39. Pathanibul, P., Taylor, T. M., Davidson, P. M., & Harte, F. (2009). Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. International Journal of Food Microbiology, 129, 316–320.CrossRefGoogle Scholar
  40. Patras, A., Brunton, N., Da Pieve, S., Butler, F., & Downey, G. (2009). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science & Emerging Technologies, 10(1), 16–22.CrossRefGoogle Scholar
  41. Pérez-Conesa, D., García-Alonso, J., García-Valverde, V., Iniesta, M. D., Jacob, K., Sánchez-Siles, L. M., Ros, G., & Periago, M. J. (2009). Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative Food Science & Emerging Technologies, 10(2), 179–188.CrossRefGoogle Scholar
  42. Qiu, W., Jiang, H., Wang, H., & Gao, Y. (2006). Effect of high hydrostatic pressure on lycopene stability. Food Chemistry, 97(3), 516–523.CrossRefGoogle Scholar
  43. Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 55(3), 207–216.CrossRefGoogle Scholar
  44. Ray, K., & Misra, T. N. (1997). Photophysical properties of lycopene organized in Langmuir-Blodgett films: formation of aggregates. Journal of Photochemistry and Photobiology A: Chemistry, 107(1–3), 201–205.CrossRefGoogle Scholar
  45. Rickman, J. C., Bruhn, C. M., & Barrett, D. M. (2007). Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. Journal of the Science of Food and Agriculture, 87(7), 1185–1196.CrossRefGoogle Scholar
  46. Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2006). Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2), 171–179.CrossRefGoogle Scholar
  47. Seybold, C., Fröhlich, K., Bitsch, R., Otto, K., & Böhm, V. (2004). Changes in contents of carotenoids and vitamin E during tomato processing. Journal of Agricultural and Food Chemistry, 52(23), 7005–7010.CrossRefGoogle Scholar
  48. Shi, J., & Le Maguer, M. (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition, 40(1), 1–42.CrossRefGoogle Scholar
  49. Svelander, C. A., Lopez-Sanchez, P., Pudney, P. D. A., Schumm, S., & Alminger, M. A. G. (2011). High pressure homogenization increases the in vitro bioaccessibility of α- and β-carotene in carrot emulsions but not of lycopene in tomato emulsions. Journal of Food Science, 76(9), H215–H225.CrossRefGoogle Scholar
  50. Svelander, C. A., Tibäck, E. A., Ahrné, L. M., Langton, M. I., Svanberg, U. S., & Alminger, M. A. (2010). Processing of tomato: impact on in vitro bioaccessibility of lycopene and textural properties. Journal of the Science of Food and Agriculture, 90(10), 1665–1672.CrossRefGoogle Scholar
  51. Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B., Bertow, D., & Ebeler, S. E. (2001). Processing effects on lycopene content and antioxidant activity of tomatoes. Journal of Agricultural and Food Chemistry, 49(8), 3713–3717.CrossRefGoogle Scholar
  52. Thakur, B. R., Singh, R. K., & Handa, A. K. (1995). Effect of homogenization pressure on consistency of tomato juice. Journal of Food Quality, 18(5), 389–396.CrossRefGoogle Scholar
  53. Zu, K., Mucci, L., Rosner, B. A., Clinton, S. K., Loda, M., Stampfer, M. J., & Giovannucci, E. (2014). Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. Journal of the National Cancer Institute, 106(2), djt430–djt430.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bing Yan
    • 1
  • Sergio I. Martínez-Monteagudo
    • 1
    • 2
  • Jessica L. Cooperstone
    • 1
  • Ken M. Riedl
    • 1
  • Steven J. Schwartz
    • 1
  • V . M. Balasubramaniam
    • 1
    • 3
    Email author
  1. 1.Department of Food Science and TechnologyThe Ohio State UniversityColumbusUSA
  2. 2.Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsUSA
  3. 3.Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations