Abstract
A novel measurement technique using fluorescence fingerprints (FFs) was developed to measure the degree of heat treatment applied to soymilk. FFs are a set of fluorescence spectra acquired at consecutive excitation wavelengths. Soymilk was heated at 50, 60, 70, 80, or 90 °C, for 10 min, and the samples were measured both in the liquid and freeze-dried forms. Partial least squares (PLS) regression models were constructed to predict heating temperature from the FFs of liquid soymilk and freeze-dried soymilk. Heating temperatures were predicted from soymilk FFs with root-mean-square errors of prediction (RMSEP) and R 2P of 7.20 °C and 0.92 and from freeze-dried soymilk FFs with RMSEP and R 2P of 9.00 °C and 0.89, respectively. The fluorescence of aromatic amino acids and Maillard products mainly contributed to the prediction models. FF measurement proved to be effective for the objective control of the soymilk heating process.




Similar content being viewed by others
References
Baisier, W. M., & Labuza, T. P. (1992). Maillard browning kinetics in a liquid model system. Journal of Agricultural and Food Chemistry, 40(5), 707–713. doi:10.1021/jf00017a001.
Becker, E. M., Christensen, J., Frederiksen, C. S., & Haugaard, V. K. (2003). Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin. Journal of Dairy Science, 86(8), 2508–2515.
de Rijke, E., Joshi, H. C., Sanderse, H. R., Ariese, F., Brinkman, U. A. T., & Gooijer, C. (2002). Natively fluorescent isoflavones exhibiting anomalous Stokes’ shifts. Analytica Chimica Acta, 468(1), 3–11. doi:10.1016/S0003-2670(02)00630-X.
Dufour, E., & Riaublanc, A. (1997). Potentiality of spectroscopic methods for the characterisation of dairy products. I. Front-face fluorescence study of raw, heated and homogenised milks. Le Lait, 77(6), 657–670.
Feinberg, M., Dupont, D., Efstathiou, T., Louâpre, V., & Guyonnet, J.-P. (2006). Evaluation of tracers for the authentication of thermal treatments of milks. Food Chemistry, 98(1), 188–194. doi:10.1016/j.foodchem.2005.07.052.
Fujita, K., Tsuta, M., Kokawa, M., & Sugiyama, J. (2010). Detection of deoxynivalenol using fluorescence excitation-emission matrix. Food and Bioprocess Technology, 3(6), 922–927.
Guimet, F., Ferre, J., Boque, R., & Rius, F. X. (2004). Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy. Analytica Chimica Acta, 515(1), 75–85.
Hackler, L. R., & Stillings, B. R. (1967). Amino acid composition of heat-processed soymilk and its correlation with nutritive value. Cereal Chemistry Journal, 44, 70–77.
Hodge, J. E. (1953). Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1(15), 928–943. doi:10.1021/jf60015a004.
Jiang, J. K., Wu, J., & Liu, X. H. (2010). Fluorescence properties of lake water. Spectroscopy and Spectral Analysis, 30(6), 1525–1529. doi:10.3964/j.issn.1000-0593(2010)06-1525-05.
Keerati-u-rai, M., Miriani, M., Iametti, S., Bonomi, F., & Corredig, M. (2012). Structural changes of soy proteins at the oil–water interface studied by fluorescence spectroscopy. Colloids and Surfaces B: Biointerfaces, 93, 41–48. doi:10.1016/j.colsurfb.2011.12.002.
Kokawa, M., Ikegami, S., Chiba, A., Koishihara, H., Trivittayasil, V., Tsuta, M., et al. (2015). Measuring cheese maturation with the fluorescence fingerprint. Food Science and Technology Research, 21(4), 549–555.
Kulmyrzaev, A. A., Levieux, D., & Dufour, E. (2005). Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. Journal of Agricultural and Food Chemistry, 53(3), 502–507. doi:10.1021/jf049224h.
Kwok, K.-C., Liang, H.-H., & Niranjan, K. (2002). Optimizing conditions for thermal processes of soy milk. Journal of Agricultural and Food Chemistry, 50(17), 4834–4838. doi:10.1021/jf020182b.
Kwok, K.-C., & Niranjan, K. (1995). Review: effect of thermal processing on soymilk. International Journal of Food Science & Technology, 30(3), 263–295. doi:10.1111/j.1365-2621.1995.tb01377.x.
Kwok, K.-C., Shiu, Y.-W., Yeung, C.-H., & Niranjan, K. (1998). Effect of thermal processing on available lysine, thiamine and riboflavin content in soymilk. Journal of the Science of Food and Agriculture, 77(4), 473–478. doi:10.1002/(sici)1097-0010(199808)77:4<473::aid-jsfa65>3.0.co;2-s.
Liang, J.-H. (1999). Fluorescence due to interactions of oxidizing soybean oil and soy proteins. Food Chemistry, 66(1), 103–108. doi:10.1016/S0308-8146(98)00250-7.
Liu, X., & Metzger, L. E. (2007). Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. Journal of Dairy Science, 90(1), 24–37. doi:10.3168/jds.S0022-0302(07)72605-X.
Moller, J. K. S., Parolari, G., Gabba, L., Christensen, J., & Skibsted, L. H. (2003). Monitoring chemical changes of dry-cured Parma ham during processing by surface autofluorescence spectroscopy. Journal of Agricultural and Food Chemistry, 51(5), 1224–1230. doi:10.1021/jf025662h.
Morales, F. J., Romero, C., & Jiménez-Pérez, S. (1996). Fluorescence associated with Maillard reaction in milk and milk-resembling systems. Food Chemistry, 57(3), 423–428. doi:10.1016/0308-8146(95)00245-6.
Ono, T., Rak Choi, M., Ikida, A., & Odaoiri, S. (1991). Changes in the composition and size distribution of soymilk protein particles by heating. Agricultural and Biological Chemistry, 55(9), 2291–2297. doi:10.1080/00021369.1991.10870969.
Sadecka, J., & Tothova, J. (2007). Fluorescence spectroscopy and chemometrics in the food classification—a review. Czech Journal of Food Sciences, 25(4), 159–173.
Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of front-face fluorescence for assessing thermal processing of milk. Journal of Food Science, 71(2), C69–C74. doi:10.1111/j.1365-2621.2006.tb08884.x.
Shimoyamada, M., Tsushima, N., Tsuzuki, K., Asao, H., & Yamauchi, R. (2008). Effect of heat treatment on dispersion stability of soymilk and heat denaturation of soymilk protein. Food Science and Technology Research, 14(1), 32–38. doi:10.3136/fstr.14.32.
Shun-Tang, G., Ono, T., & Mikami, M. (1997). Interaction between protein and lipid in soybean milk at elevated temperature. Journal of Agricultural and Food Chemistry, 45(12), 4601–4605. doi:10.1021/jf970417x.
Sikorska, E., Glisuzynska-Swiglo, A., Insinska-Rak, M., Khmelinskii, I., De Keukeleire, D., & Sikorski, M. (2008). Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Analytica Chimica Acta, 613(2), 207–217. doi:10.1016/j.aca.2008.02.063.
Thomas, A. H., Lorente, C., Capparelli, A. L., Pokhrel, M. R., Braun, A. M., & Oliveros, E. (2002). Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. [10.1039/B202114E]. Photochemical & Photobiological Sciences, 1(6), 421–426. doi:10.1039/b202114e.
Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.
Yin, C. L., Li, H., Ding, C. H., & Wang, H. (2009). Preliminary investigation on variety, brewery and vintage of wines using three-dimensional fluorescence spectroscopy. Food Science and Technology Research, 15(1), 27–38.
Yuan, S., Chang, S. K., Liu, Z., & Xu, B. (2008). Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. Journal of Agricultural and Food Chemistry, 56(17), 7957–7963.
Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., & Metz, T. O. (2009). A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. Journal of Proteome Research, 8(2), 754–769. doi:10.1021/pr800858h.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kokawa, M., Nishi, K., Ashida, H. et al. Predicting the Heating Temperature of Soymilk Products Using Fluorescence Fingerprints. Food Bioprocess Technol 10, 462–468 (2017). https://doi.org/10.1007/s11947-016-1835-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11947-016-1835-6


