Skip to main content
Log in

Predicting the Heating Temperature of Soymilk Products Using Fluorescence Fingerprints

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A novel measurement technique using fluorescence fingerprints (FFs) was developed to measure the degree of heat treatment applied to soymilk. FFs are a set of fluorescence spectra acquired at consecutive excitation wavelengths. Soymilk was heated at 50, 60, 70, 80, or 90 °C, for 10 min, and the samples were measured both in the liquid and freeze-dried forms. Partial least squares (PLS) regression models were constructed to predict heating temperature from the FFs of liquid soymilk and freeze-dried soymilk. Heating temperatures were predicted from soymilk FFs with root-mean-square errors of prediction (RMSEP) and R 2P of 7.20 °C and 0.92 and from freeze-dried soymilk FFs with RMSEP and R 2P of 9.00 °C and 0.89, respectively. The fluorescence of aromatic amino acids and Maillard products mainly contributed to the prediction models. FF measurement proved to be effective for the objective control of the soymilk heating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baisier, W. M., & Labuza, T. P. (1992). Maillard browning kinetics in a liquid model system. Journal of Agricultural and Food Chemistry, 40(5), 707–713. doi:10.1021/jf00017a001.

    Article  CAS  Google Scholar 

  • Becker, E. M., Christensen, J., Frederiksen, C. S., & Haugaard, V. K. (2003). Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin. Journal of Dairy Science, 86(8), 2508–2515.

    Article  CAS  Google Scholar 

  • de Rijke, E., Joshi, H. C., Sanderse, H. R., Ariese, F., Brinkman, U. A. T., & Gooijer, C. (2002). Natively fluorescent isoflavones exhibiting anomalous Stokes’ shifts. Analytica Chimica Acta, 468(1), 3–11. doi:10.1016/S0003-2670(02)00630-X.

    Article  Google Scholar 

  • Dufour, E., & Riaublanc, A. (1997). Potentiality of spectroscopic methods for the characterisation of dairy products. I. Front-face fluorescence study of raw, heated and homogenised milks. Le Lait, 77(6), 657–670.

    Article  CAS  Google Scholar 

  • Feinberg, M., Dupont, D., Efstathiou, T., Louâpre, V., & Guyonnet, J.-P. (2006). Evaluation of tracers for the authentication of thermal treatments of milks. Food Chemistry, 98(1), 188–194. doi:10.1016/j.foodchem.2005.07.052.

    Article  CAS  Google Scholar 

  • Fujita, K., Tsuta, M., Kokawa, M., & Sugiyama, J. (2010). Detection of deoxynivalenol using fluorescence excitation-emission matrix. Food and Bioprocess Technology, 3(6), 922–927.

    Article  CAS  Google Scholar 

  • Guimet, F., Ferre, J., Boque, R., & Rius, F. X. (2004). Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation-emission matrix fluorescence spectroscopy. Analytica Chimica Acta, 515(1), 75–85.

    Article  CAS  Google Scholar 

  • Hackler, L. R., & Stillings, B. R. (1967). Amino acid composition of heat-processed soymilk and its correlation with nutritive value. Cereal Chemistry Journal, 44, 70–77.

    CAS  Google Scholar 

  • Hodge, J. E. (1953). Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1(15), 928–943. doi:10.1021/jf60015a004.

    Article  CAS  Google Scholar 

  • Jiang, J. K., Wu, J., & Liu, X. H. (2010). Fluorescence properties of lake water. Spectroscopy and Spectral Analysis, 30(6), 1525–1529. doi:10.3964/j.issn.1000-0593(2010)06-1525-05.

    CAS  Google Scholar 

  • Keerati-u-rai, M., Miriani, M., Iametti, S., Bonomi, F., & Corredig, M. (2012). Structural changes of soy proteins at the oil–water interface studied by fluorescence spectroscopy. Colloids and Surfaces B: Biointerfaces, 93, 41–48. doi:10.1016/j.colsurfb.2011.12.002.

    Article  CAS  Google Scholar 

  • Kokawa, M., Ikegami, S., Chiba, A., Koishihara, H., Trivittayasil, V., Tsuta, M., et al. (2015). Measuring cheese maturation with the fluorescence fingerprint. Food Science and Technology Research, 21(4), 549–555.

    Article  CAS  Google Scholar 

  • Kulmyrzaev, A. A., Levieux, D., & Dufour, E. (2005). Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. Journal of Agricultural and Food Chemistry, 53(3), 502–507. doi:10.1021/jf049224h.

    Article  CAS  Google Scholar 

  • Kwok, K.-C., Liang, H.-H., & Niranjan, K. (2002). Optimizing conditions for thermal processes of soy milk. Journal of Agricultural and Food Chemistry, 50(17), 4834–4838. doi:10.1021/jf020182b.

    Article  CAS  Google Scholar 

  • Kwok, K.-C., & Niranjan, K. (1995). Review: effect of thermal processing on soymilk. International Journal of Food Science & Technology, 30(3), 263–295. doi:10.1111/j.1365-2621.1995.tb01377.x.

    Article  CAS  Google Scholar 

  • Kwok, K.-C., Shiu, Y.-W., Yeung, C.-H., & Niranjan, K. (1998). Effect of thermal processing on available lysine, thiamine and riboflavin content in soymilk. Journal of the Science of Food and Agriculture, 77(4), 473–478. doi:10.1002/(sici)1097-0010(199808)77:4<473::aid-jsfa65>3.0.co;2-s.

    Article  CAS  Google Scholar 

  • Liang, J.-H. (1999). Fluorescence due to interactions of oxidizing soybean oil and soy proteins. Food Chemistry, 66(1), 103–108. doi:10.1016/S0308-8146(98)00250-7.

    Article  CAS  Google Scholar 

  • Liu, X., & Metzger, L. E. (2007). Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. Journal of Dairy Science, 90(1), 24–37. doi:10.3168/jds.S0022-0302(07)72605-X.

    Article  CAS  Google Scholar 

  • Moller, J. K. S., Parolari, G., Gabba, L., Christensen, J., & Skibsted, L. H. (2003). Monitoring chemical changes of dry-cured Parma ham during processing by surface autofluorescence spectroscopy. Journal of Agricultural and Food Chemistry, 51(5), 1224–1230. doi:10.1021/jf025662h.

    Article  CAS  Google Scholar 

  • Morales, F. J., Romero, C., & Jiménez-Pérez, S. (1996). Fluorescence associated with Maillard reaction in milk and milk-resembling systems. Food Chemistry, 57(3), 423–428. doi:10.1016/0308-8146(95)00245-6.

    Article  CAS  Google Scholar 

  • Ono, T., Rak Choi, M., Ikida, A., & Odaoiri, S. (1991). Changes in the composition and size distribution of soymilk protein particles by heating. Agricultural and Biological Chemistry, 55(9), 2291–2297. doi:10.1080/00021369.1991.10870969.

    CAS  Google Scholar 

  • Sadecka, J., & Tothova, J. (2007). Fluorescence spectroscopy and chemometrics in the food classification—a review. Czech Journal of Food Sciences, 25(4), 159–173.

    CAS  Google Scholar 

  • Schamberger, G. P., & Labuza, T. P. (2006). Evaluation of front-face fluorescence for assessing thermal processing of milk. Journal of Food Science, 71(2), C69–C74. doi:10.1111/j.1365-2621.2006.tb08884.x.

    Article  CAS  Google Scholar 

  • Shimoyamada, M., Tsushima, N., Tsuzuki, K., Asao, H., & Yamauchi, R. (2008). Effect of heat treatment on dispersion stability of soymilk and heat denaturation of soymilk protein. Food Science and Technology Research, 14(1), 32–38. doi:10.3136/fstr.14.32.

    Article  CAS  Google Scholar 

  • Shun-Tang, G., Ono, T., & Mikami, M. (1997). Interaction between protein and lipid in soybean milk at elevated temperature. Journal of Agricultural and Food Chemistry, 45(12), 4601–4605. doi:10.1021/jf970417x.

    Article  Google Scholar 

  • Sikorska, E., Glisuzynska-Swiglo, A., Insinska-Rak, M., Khmelinskii, I., De Keukeleire, D., & Sikorski, M. (2008). Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Analytica Chimica Acta, 613(2), 207–217. doi:10.1016/j.aca.2008.02.063.

    Article  CAS  Google Scholar 

  • Thomas, A. H., Lorente, C., Capparelli, A. L., Pokhrel, M. R., Braun, A. M., & Oliveros, E. (2002). Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. [10.1039/B202114E]. Photochemical & Photobiological Sciences, 1(6), 421–426. doi:10.1039/b202114e.

    Article  CAS  Google Scholar 

  • Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.

    Article  CAS  Google Scholar 

  • Yin, C. L., Li, H., Ding, C. H., & Wang, H. (2009). Preliminary investigation on variety, brewery and vintage of wines using three-dimensional fluorescence spectroscopy. Food Science and Technology Research, 15(1), 27–38.

    Article  CAS  Google Scholar 

  • Yuan, S., Chang, S. K., Liu, Z., & Xu, B. (2008). Elimination of trypsin inhibitor activity and beany flavor in soy milk by consecutive blanching and ultrahigh-temperature (UHT) processing. Journal of Agricultural and Food Chemistry, 56(17), 7957–7963.

    Article  CAS  Google Scholar 

  • Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., & Metz, T. O. (2009). A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. Journal of Proteome Research, 8(2), 754–769. doi:10.1021/pr800858h.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuki Tsuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokawa, M., Nishi, K., Ashida, H. et al. Predicting the Heating Temperature of Soymilk Products Using Fluorescence Fingerprints. Food Bioprocess Technol 10, 462–468 (2017). https://doi.org/10.1007/s11947-016-1835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1835-6

Keywords