Skip to main content
Log in

Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

An effort was made to understand the impacts of dried cherry pomace (by-product of cherry juice processing) inclusion into corn starch extrudates on their direct expansion characteristics. The effect of pomace particle sizes (whole unfractionated (<125 to >500 μm), <125, 125–250, 250–500, and >500 μm) and levels of pomace inclusion (0, 5. and 15% (w/w)) were specifically investigated. Feed moisture content of 15.5 ± 0.5% (w.b.) and the extruder barrel temperature of 140 °C were kept constant with varying extruder screw speed (150, 200, and 250 rpm). The radial expansion ratio (ER) increased with 5% pomace level of inclusion compared with control but decreased significantly (p < 0.05) at 15% inclusion. Particle sizes significantly affected ER (p < 0.05) with smaller particle sizes resulting in increased ER at all levels of pomace. Adding cherry pomace significantly decreased water absorption index (WAI) and water solubility index (WSI) with smaller particles leading to higher WSI. Extrusion process did not reduce the total phenolic content (gallic acid equivalents). Inclusion of the smallest particle size (<125 μm) cherry pomace at 5% level of inclusion yielded extrudates with the highest expansion ratio among all treatments, including the control. The scanning electron images suggested improvements in the extrudate surface and the internal cell structures. The results indicated the presence of active interactions between the cherry pomace and starch during the expansion process which is not present as an inert material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ali, Y., Hanna, M. A., & Chinnaswamy, R. (1996). Expansion characteristics of extruded corn grits. Lebensmittel-Wissenschaft und Technologie, 29(8), 702–707.

    Article  CAS  Google Scholar 

  • Al-Rabadi, G. J., Torley, P. J., Williams, B. A., Bryden, W. L., & Gidley, M. J. (2011). Particle size of milled barley and sorghum and physico-chemical properties of grain following extrusion. Journal of Food Engineering, 103(4), 464–472.

    Article  CAS  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008a). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. Journal of Food Engineering, 84(2), 231–242.

    Article  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008b). Twin-screw extrusion of barley–grape pomace blends: extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24–32.

    Article  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley-based extrudates from fruit and vegetable by-products. Journal of Food Science, 74(2), E77–E86.

    Article  CAS  Google Scholar 

  • Anderson, R. A., Conway, H. F., Pfeifer, V. F., & Griffin, J., E. L. (1969). Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Science Today, 14(1), 4–7, 11-12.

  • Anguita, M., Gasa, J., Martín-Orúe, S., & Pérez, J. (2006). Study of the effect of technological processes on starch hydrolysis, non-starch polysaccharides solubilization and physicochemical properties of different ingredients using a two-step in vitro system. Animal Feed Science and Technology, 129(1), 99–115.

    Article  CAS  Google Scholar 

  • Artz, W., Warren, C., & Villota, R. (1990). Twin-screw extrusion modification of a corn fiber and corn starch extruded blend. Journal of Food Science, 55(3), 746–754.

    Article  Google Scholar 

  • Bajerska, J., Mildner-Szkudlarz, S., Górnaś, P., & Seglina, D. (2015). The effects of muffins enriched with sour cherry pomace on acceptability, glycemic response, satiety and energy intake: a randomized crossover trial. Journal of the Science of Food and Agriculture.

    Google Scholar 

  • Bénézet, J.-C., Stanojlovic-Davidovic, A., Bergeret, A., Ferry, L., & Crespy, A. (2012). Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, 37(1), 435–440.

    Article  Google Scholar 

  • Brnčić, M., Bosiljkov, T., Ukrainczyk, M., Tripalo, B., Brnčić, S. R., Karlović, S., et al. (2011). Influence of whey protein addition and feed moisture content on chosen physicochemical properties of directly expanded corn extrudates. Food and Bioprocess Technology, 4(7), 1296–1306.

    Article  Google Scholar 

  • Brümmer, T., Meuser, F., van Lengerich, B., & Niemann, C. (2002). Expansion and functional properties of corn starch extrudates related to their molecular degradation, product temperature and water content. Starch-Stärke, 54(1), 9–15.

    Article  Google Scholar 

  • Caltinoglu, C., Tonyali, B., & Sensoy, I. (2014). Effects of tomato pulp addition on the extrudate quality parameters and effects of extrusion on the functional parameters of the extrudates. International Journal of Food Science and Technology, 49(2), 587–594.

    Article  CAS  Google Scholar 

  • Camire, M. E., & King, C. (1991). Protein and fiber supplementation effects on extruded cornmeal snack quality. Journal of Food Science, 56(3), 760–763.

    Article  CAS  Google Scholar 

  • Camire, M. E., Dougherty, M. P., & Briggs, J. L. (2007). Functionality of fruit powders in extruded corn breakfast cereals. Food Chemistry, 101(2), 765–770.

    Article  CAS  Google Scholar 

  • Carvalho, C. W., Takeiti, C. Y., Onwulata, C. I., & Pordesimo, L. O. (2010). Relative effect of particle size on the physical properties of corn meal extrudates: effect of particle size on the extrusion of corn meal. Journal of Food Engineering, 98(1), 103–109.

    Article  CAS  Google Scholar 

  • Chaovanalikit, A., & Wrolstad, R. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69(1), FCT67–FCT72.

    CAS  Google Scholar 

  • Chau, C.-F., Chen, C.-H., & Lee, M.-H. (2004). Comparison of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fiber-rich fractions. LWT-Food Science and Technology, 37(2), 155–160.

    Article  CAS  Google Scholar 

  • Dar, A. H., Sharma, H. K., & Kumar, N. (2014). Effect of extrusion temperature on the microstructure, textural and functional attributes of carrot pomace-based extrudates. Journal of Food Processing and Preservation, 38(1), 212–222. doi:10.1111/j.1745-4549.2012.00767.x.

    Article  CAS  Google Scholar 

  • Dehghan-Shoar, Z., Hardacre, A. K., & Brennan, C. S. (2010). The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chemistry, 123(4), 1117–1122.

    Article  CAS  Google Scholar 

  • Ding, Q.-B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 66(3), 283–289.

    Article  Google Scholar 

  • Fernández López, J., López, J., & Pérez-Alvarez, J. (2008). Development of functional ingredients: fruits fibre. Technological strategies for functional meat products development, 41–56.

  • Follonier, S., Goyder, M. S., Silvestri, A. C., Crelier, S., Kalman, F., Riesen, R., et al. (2014). Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. International Journal of Biological Macromolecules.

    Google Scholar 

  • Ganjyal, G. M., & Hanna, M. A. (2002). A review on residence time distribution (RTD) in food extruders and study on the potential of neural networks in RTD modeling. Journal of Food Science, 67(6), 1996–2002.

    Article  CAS  Google Scholar 

  • Ganjyal, G. M., & Hanna, M. A. (2004). Effects of extruder die nozzle dimensions on expansion and micrographic characterization during extrusion of acetylated starch. Starch-Stärke, 56(3–4), 108–117.

    Article  CAS  Google Scholar 

  • Ganjyal, G. M., & Hanna, M. A. (2006). Role of blowing agents in expansion of high-amylose starch acetate during extrusion 1. Cereal Chemistry, 83(6), 577–583.

    Article  CAS  Google Scholar 

  • Ganjyal, G. M., Hanna, M. A., & Jones, D. (2003). Modeling selected properties of extruded waxy maize cross-linked starches with neural networks. Journal of Food Science, 68(4), 1384–1388.

    Article  CAS  Google Scholar 

  • Godavarti, S., & Karwe, M. (1997). Determination of specific mechanical energy distribution on a twin-screw extruder. Journal of Agricultural Engineering Research, 67(4), 277–287.

    Article  Google Scholar 

  • Gomez, M., & Aguilera, J. (1984). A physicochemical model for extrusion of corn starch. Journal of Food Science, 49(1), 40–43.

    Article  Google Scholar 

  • Greiby, I., Siddiq, M., Dolan, K. D., & Kelkar, S. (2013). Effect of non-isothermal processing and moisture content on the anthocyanin degradation and colour kinetics of cherry pomace. International Journal of Food Science and Technology, 48(5), 992–998.

    Article  CAS  Google Scholar 

  • Guan, J., Fang, Q., & Hanna, M. (2004). Selected functional properties of extruded starch acetate and natural fibers foams. Cereal Chemistry, 81(2), 199–206.

    Article  CAS  Google Scholar 

  • Hsieh, F., Huff, H., Lue, S., & Stringer, L. (1991). Twin-screw extrusion of sugar beet fiber and corn meal. Lebensmittel-Wissenschaft+ Technologie, 24(6), 495–500.

    Google Scholar 

  • Hu, L., Hsieh, F., & Huff, H. (1993). Corn meal extrusion with emulsifier and soybean fiber. LWT-Food Science and Technology, 26(6), 544–551.

    Article  CAS  Google Scholar 

  • Kołodziejczyk, K., Sójka, M., Abadias, M., Viñas, I., Guyot, S., & Baron, A. (2013). Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Industrial Crops and Products, 51, 279–288.

    Article  Google Scholar 

  • Kowalski, R. J., Morris, C. F., & Ganjyal, G. M. (2015). Waxy soft white wheat: extrusion characteristics, thermal and rheological properties. Cereal Chemistry, 92(2), 145–153. doi:10.1094/CCHEM-03-14-0039-R.

    Article  CAS  Google Scholar 

  • Kumar, N., Sarkar, B., & Sharma, H. K. (2010). Development and characterization of extruded product using carrot pomace and rice flour. International Journal of Food Engineering, 6(3).

  • Larrauri, J. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3–8.

    Article  CAS  Google Scholar 

  • Lazou, A., & Krokida, M. (2010). Structural and textural characterization of corn–lentil extruded snacks. Journal of Food Engineering, 100(3), 392–408.

    Article  Google Scholar 

  • Luca, A., Cilek, B., Hasirci, V., Sahin, S., & Sumnu, G. (2013). Effect of degritting of phenolic extract from sour cherry pomace on encapsulation efficiency-production of nano-suspension. Food and Bioprocess Technology, 6(9), 2494–2502.

    Article  CAS  Google Scholar 

  • Lue, S., & Huff, H. (1991). Extrusion cooking of corn meal and sugar beet fiber: effects on expansion properties, starch gelatinization, and dietary fiber content. Cereal chemistry (USA), 68(3).

  • Nawirska, A., & Kwaśniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry, 91(2), 221–225.

    Article  CAS  Google Scholar 

  • Oliveira, L. C., Rosell, C. M., & Steel, C. J. (2015). Effect of the addition of whole-grain wheat flour and of extrusion process parameters on dietary fibre content, starch transformation and mechanical properties of a ready-to-eat breakfast cereal. International Journal of Food Science & Technology, 50(6), 1504–1514.

    Article  CAS  Google Scholar 

  • Pęksa, A., Kita, A., Carbonell-Barrachina, A. A., Miedzianka, J., Kolniak-Ostek, J., Tajner-Czopek, A., et al. (2016). Sensory attributes and physicochemical features of corn snacks as affected by different flour types and extrusion conditions. LWT-Food Science and Technology, 72, 26–36.

    Article  Google Scholar 

  • Potter, R., Stojceska, V., & Plunkett, A. (2013). The use of fruit powders in extruded snacks suitable for children’s diets. LWT-Food Science and Technology, 51(2), 537–544.

    Article  CAS  Google Scholar 

  • Reis, S. F., Rai, D. K., & Abu-Ghannam, N. (2012). Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chemistry, 135(3), 1991–1998.

    Article  CAS  Google Scholar 

  • Robin, F., Dattinger, S., Boire, A., Forny, L., Horvat, M., Schuchmann, H. P., et al. (2012a). Elastic properties of extruded starchy melts containing wheat bran using on-line rheology and dynamic mechanical thermal analysis. Journal of Food Engineering, 109(3), 414–423. doi:10.1016/j.jfoodeng.2011.11.006.

    Article  CAS  Google Scholar 

  • Robin, F., Schuchmann, H. P., & Palzer, S. (2012b). Dietary fiber in extruded cereals: limitations and opportunities. Trends in Food Science & Technology, 28(1), 23–32.

    Article  CAS  Google Scholar 

  • Ryu, G. H., & Ng, P. (2001). Effects of selected process parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch-Stärke, 53(3–4), 147–154.

    Article  CAS  Google Scholar 

  • Schieber, A., Stintzing, F., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology, 12(11), 401–413.

    Article  CAS  Google Scholar 

  • Singleton, V., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Slavin, J. L., & Greenberg, N. A. (2003). Partially hydrolyzed guar gum: clinical nutrition uses. Nutrition, 19(6), 549–552.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., İbanoğlu, E., & İbanoğlu, Ş. (2008). Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. Journal of Food Engineering, 87(4), 554–563.

    Article  CAS  Google Scholar 

  • Sudha, M., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686–692.

    Article  CAS  Google Scholar 

  • Villmow, T., Kretzschmar, B., & Pötschke, P. (2010). Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Composites Science and Technology, 70(14), 2045–2055. doi:10.1016/j.compscitech.2010.07.021.

    Article  CAS  Google Scholar 

  • Wang, H., Nair, M. G., Strasburg, G. M., Chang, Y.-C., Booren, A. M., Gray, J. I., et al. (1999). Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal of Natural Products, 62(2), 294–296.

    Article  CAS  Google Scholar 

  • Willett, J., & Shogren, R. (2002). Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935–5947.

    Article  CAS  Google Scholar 

  • Yanniotis, S., Petraki, A., & Soumpasi, E. (2007). Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. Journal of Food Engineering, 80(2), 594–599.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the new faculty seed grant awarded to Dr. Girish Ganjyal, through the Washington State University. We also thank the Chinese Scholarship Council for providing the scholarship to Siyuan Wang for her PhD studies at Washington State University (WSU). We thank Valley Processing, Inc., for providing the cherry pomace used in this research work. We also would like to thank Tate & Lyle, Co. for providing the starch used in this research work. Special thanks are given to Ms. Sravya Kallu and Mr. Chongjun Li for their help with the acquisition of the scanning electron microscopy (SEM) images. We also would like to thank the Franceschi Microscopy and Imaging Center at WSU for providing access to the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Ganjyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Kowalski, R.J., Kang, Y. et al. Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch. Food Bioprocess Technol 10, 394–406 (2017). https://doi.org/10.1007/s11947-016-1824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1824-9

Keywords

Navigation