Skip to main content

Advertisement

Log in

Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effectiveness of edible films (EFs) used as coatings to maintain the quality and safety of fresh produce for long time depends on their functional properties characterization. This study was aimed to design and evaluate physicochemical, barrier, mechanical, and antimicrobial properties of EFs based on corn starch (acetylated cross-linked (ACLS) or oxidized (OS)), micro-emulsified beeswax (BW, 0–1 % w/w), and two natural antimicrobials (lauric arginate (LAE, 400–4000 mg/L) and natamycin (NAT, 80–800 mg/L)). EFs based on ACLS or OS made with 1 % BW microemulsion produced homogeneous EFs surface and did not show changes in thickness or opacity. Water vapor permeability (WVP, 0.57 ± 0.04 g mm m−2 h−1 kPa−1 for ACLS, and 0.56 ± 0.05 g mm m−2 h−1 kPa−1 for OS) was reduced; tensile strength (TS, 51.48 ± 5.92 MPa for ACLS, and 40.96 ± 4.98 MPa for OS), and elastic modulus (EM, 211.30 ± 7.85 MPa for ACLS, and 203.50 ± 5.35 MPa for OS) were decreased, whereas elongation at break (E, 4.59 ± 1.11 % for ACLS, and 4.76 ± 4.98 % for OS) increased. The additive effect showed by the combination of natural antimicrobials (2000 mg/L of LAE plus 400 mg/L of NAT) incorporated into EFs with 1 % BW completely inhibited Rhizopus stolonifer, Colletotrichum gloeosporioides, Botrytis cinerea, and Salmonella Saintpaul. These properties of corn starch EFs used as coatings represent an excellent alternative to extend the shelf life of fresh produce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACLS:

Acetylated cross-linked starch

BW:

Beeswax

E:

Elongation at break

EFs:

Edible films

EM:

Elastic modulus

LAE:

Lauric arginate

NAT:

Natamycin

OS:

Oxidized starch

PDA:

Potato dextrose agar

PDB:

Potato dextrose broth

RBA:

Rose bengal agar

RH:

Relative humidity

TS:

Tensile strength

TSA:

Tryptone soy agar

TSB:

Tryptone soy broth

WVP:

Water vapor permeability

References

  • Antunes, M. D. C., & Cavaco, A. M. (2010). The use of essential oils for postharvest decay control. A review. Flavour and Fragrance Journal, 25(5), 351–366.

    Article  CAS  Google Scholar 

  • ASTM D882-10 (2010). Standard test method for tensile properties of thin plastic sheeting. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • ASTM E96-00 (2000). Standard test method for water vapor transmission of materials. Philadelphia: American Society for Testing and Materials.

    Google Scholar 

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6(9), 2419–2428.

    Article  CAS  Google Scholar 

  • Becerril, R., Manso, S., Nerin, C., & Gómez-Lus, R. (2013). Antimicrobial activity of lauroyl arginate ethyl (LAE), against selected food-borne bacteria. Food Control, 32(2), 404–408.

    Article  CAS  Google Scholar 

  • Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science, 75(9), 557–563.

    Article  Google Scholar 

  • CDC (2015). Reports of Salmonella outbreak investigations from 2006 through 2015 http://www.cdc.gov/salmonella/outbreaks-2009-06.html. Accessed March 2016.

  • Chen, C. H., Kuo, W. S., & Lai, L. S. (2009). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23(3), 714–721.

    Article  CAS  Google Scholar 

  • Chiumarelli, M., & Hubinger, M. D. (2012). Stability, solubility, mechanical and barrier properties of cassava starch-Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 28(1), 59–67.

    Article  CAS  Google Scholar 

  • Cong, F., Zhang, Y., & Dong, W. (2007). Use of surface coatings with natamycin to improve the storability of Hami melon at ambient temperature. Postharvest Biology and Technology, 46(1), 71–75.

    Article  CAS  Google Scholar 

  • Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., Khakpour, M., & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606–613.

    Article  CAS  Google Scholar 

  • Da-Silva, M. A., Iamanaka, B. T., Taniwaki, M. H., & Kieckbush, T. G. (2013). Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packaging Technology and Science, 26(8), 479–492.

    Article  Google Scholar 

  • Delves-Broughton, J., Thomas, L. V., Doan, C. H., & Davidson, P. M. (2005). Natamycin. In P. M. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in food (pp. 275–289). Florida: CRC Press.

    Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450.

    Article  CAS  Google Scholar 

  • EFSA-J.511 (2007). European Food Safety Authority, 1–27.

  • Ercolini, D., La Storia, A., Villani, F., & Maurellio, G. (2006). Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. Journal of Applied Microbiology, 100(4), 765–772.

    Article  CAS  Google Scholar 

  • Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393–400.

    Article  CAS  Google Scholar 

  • Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676–683.

    Article  CAS  Google Scholar 

  • Flanagan, J., & Singh, H. (2006). Microemulsions: a potential delivery system for bioactives in food. Critical Reviews in Food Science and Nutrition, 46(3), 221–237.

    Article  CAS  Google Scholar 

  • Fonseca, L. M., Goncalves, J. R., Mello-El Halal, S. L., Pinto, V. Z., Dias, A. R. V., Jacques, A. C., & Zavareze, E. R. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT-Journal of Food Science and Technology, 60(2), 714–720.

    Article  CAS  Google Scholar 

  • Ghosh, V., Mukherjee, A., & Chandrasekaran, N. (2013). Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonic Sonochemistry, 20(1), 338–344.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., Tapia, M. S., Pérez, M. E., & Famá, L. (2015). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids, 45, 211–217.

    Article  Google Scholar 

  • Hagenmaier, R. D., & Baker, R. A. (1994). Wax microemulsions and emulsions as citrus coatings. Journal of Agricultural and Food Chemistry, 42(4), 899–902.

    Article  CAS  Google Scholar 

  • Hagenmaier, R. D., & Baker, R. A. (1997). Edible coatings from morpholine-free wax microemulsions. Journal of Agricultural and Food Chemistry, 45(2), 349–352.

    Article  CAS  Google Scholar 

  • Han, J. H., Seo, G. H., Park, I. M., Kim, G. N., & Lee, D. S. (2006). Physical and mechanical properties of pea starch edible films containing beeswax emulsions. Journal of Food Science, 71(6), 290–296.

    Article  Google Scholar 

  • Hélder, D. S., Cerqueria, M. A., & Vicente, A. A. (2012). Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology, 5(3), 854–867.

    Article  Google Scholar 

  • Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Gavara, R., & Rollini, M. (2013). Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-L-arginate) and its application to fresh chicken. International Journal of Food Microbiology, 165(3), 339–345.

    Article  CAS  Google Scholar 

  • Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: a review. Food Research International, 43(2), 399–413.

    Article  CAS  Google Scholar 

  • Jafari, S. M., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—a comparison. International Journal of Food Properties, 9(3), 475–485.

    Article  CAS  Google Scholar 

  • Janjarasskul, T., & Krochta, J. M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1, 415–448.

    Article  CAS  Google Scholar 

  • Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5(6), 2058–2076.

    Article  Google Scholar 

  • Kaur, L., Singh, J., & Singh, N. (2006). Effect of cross-linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 86(12), 1945–1954.

    Article  CAS  Google Scholar 

  • Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science and Emerging Technologies, 9(2), 170–175.

    Article  CAS  Google Scholar 

  • Kowalczyk, D., Kordowska-Wiater, M., Nowalk, J., & Baraniak, B. (2015). Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin. International Journal of Biological Macromolecules, 77, 350–359.

    Article  CAS  Google Scholar 

  • Kuakpetoon, D., & Wong, Y. J. (2006). Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydrate Research, 341(11), 1896–1915.

    Article  CAS  Google Scholar 

  • Lin, D., & Zhao, Y. (2007). Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60–71.

    Article  CAS  Google Scholar 

  • Longares, A., Monahan, F. J., O’Riordan, E. D., & O’Sullivan, M. (2004). Physical properties and sensory evaluation of WPI films of varying thickness. LWT-Journal of Food Science and Technology, 37(5), 545–550.

    Article  CAS  Google Scholar 

  • López, O. V., García, M. A., & Zaritzky, N. E. (2008). Film forming capacity of chemically modified corn starches. Carbohydrate Polymers, 73(4), 573–581.

    Article  Google Scholar 

  • López, O. V., Zaritzky, N. E., & García, M. A. (2010). Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering, 100(1), 160–168.

    Article  Google Scholar 

  • López-Malo, A., Palou, E., Parish, M. E., & Davidson, M. (2005). Methods for activity assay and evaluation of results. In M. P. Davidson, J. N. Sofos, & A. L. Branen (Eds.), Antimicrobials in Food (pp. 659–680). Florida: CRC Press.

    Google Scholar 

  • Ma, Q., Davidson, P. M., & Zhong, Q. (2013). Antimicrobial properties of lauric arginate alone or in combination with essential oils in tryptic soy broth and 2 % reduced fat milk. International Journal of Food Microbiology, 166(1), 77–84.

    Article  CAS  Google Scholar 

  • Ma, Q., Zhang, Y., & Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Science and Technology, 65, 173–179.

    Article  CAS  Google Scholar 

  • McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330.

    Article  CAS  Google Scholar 

  • Mei, J., Yuan, Y., Guo, Q., Wu, Y., Li, Y., & Yu, H. (2013). Characterization and antimicrobial properties of water chestnut starch-chitosan edible films. International Journal of Biological Macromolecules, 61, 169–174.

    Article  CAS  Google Scholar 

  • Monedero, F. M., Fabra, M. J., Talens, P., & Chiralt (2009). Effect of oleic acid–beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering, 91(4), 509–515.

    Article  CAS  Google Scholar 

  • Muscat, D., Adhikari, R., McKnight, S., Guo, Q., & Adhikari, B. (2013). The physicochemical characteristics and hydrophobicity of high amylose starch–glycerol films in the presence of three natural waxes. Journal of Food Engineering, 119(2), 205–219.

    Article  CAS  Google Scholar 

  • Navarro-Tarazaga, M. L., Del Río, M. A., Krochta, J. M., & Pérez-Gago, M. B. (2008). Fatty acid effect on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated ‘ortanique’ mandarins. Journal of Agricultural and Food Chemistry, 56(22), 10689–10696.

    Article  CAS  Google Scholar 

  • Nouri, L., & Nafchi, A. M. (2014). Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. International Journal of Biological Macromolecules, 66, 254–259.

    Article  CAS  Google Scholar 

  • Olivas, G. I., & Barbosa-Cánovas, G. (2009). Edible films and coatings for fruit and vegetables. In M. E. Embuscado & K. C. Huber (Eds.), Edible films and coatings for food applications (pp. 211–244). New York: Springer.

    Chapter  Google Scholar 

  • Perez-Gago, M. B., Rojas, C., & Del Rio, M. A. (2002). Effect of lipid type and amount of edible hydroxypropyl methylcellulose-lipid composite coatings used to protect postharvest quality of mandarins cv. Fortune. Journal of Food Science, 67(8), 2903–2910.

    Article  CAS  Google Scholar 

  • Pérez-Gallardo, A., Bello-Pérez, L. A., García-Almendárez, B., Montejano-Gaitán, G., Barbosa-Cánovas, G., & Regalado-González, C. (2012). Effect of structural characteristics of modified waxy corn starches on rheological properties, film-forming solutions, and on water vapor permeability, solubility, and opacity of films. Starch/Stärke, 64(1), 27–36.

    Article  Google Scholar 

  • Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (pp. 19–52). New York: Springer.

    Book  Google Scholar 

  • Rasband, W. S. (2007). Image J. Bethesda, MD: U.S. National Institute of Health http://rsb.info.nih.gov/ij/index.html. Accessed September 2015.

    Google Scholar 

  • Rodríguez, E., Seguer, J., Rocabayera, X., & Manresa, A. (2004). Cellular effects of monohydrochloride of L-arginine, Na-lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus. Journal of Applied Microbiology, 96(5), 903–912.

    Article  Google Scholar 

  • Sánchez-Rivera, M. M., Flores-Ramírez, I., Zamudio-Flores, P. B., González-Soto, R. A., Rodríguez-Ambríz, S. L., & Bello-Pérez, L. A. (2010). Acetylation of banana (Musa paradisiaca L.) and maize (Zea mays L.) starches using a microwave heating procedure and iodine as catalyst: partial characterization. Starch/Stärke, 62(3–4), 155–164.

    Article  Google Scholar 

  • Sangseethong, K., Termvejsayanon, N., & Sriroth, K. (2010). Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches. Carbohydrate Polymers, 82(2), 446–453.

    Article  CAS  Google Scholar 

  • Santos, T. M., Pinto, A. M. B., Oliveira, A. V., Ribeiro, H. L., Caceres, C. A., Ito, E. N., & Azeredo, H. M. C. (2014). Physical properties of cassava starch–carnauba wax emulsion films as affected by component proportions. International Journal of Food Science and Technology, 49(9), 2045–2051.

    Article  CAS  Google Scholar 

  • Shah, U., Naqash, F., Gani, A., & Masoodi, F. A. (2016). Art and science behind modified starch edible films and coatings: a review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 568–580.

    Article  CAS  Google Scholar 

  • Singh, J., Kaur, L., & McCarthy, O. J. (2007). Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications: a review. Food Hydrocolloids, 21(1), 1–22.

    Article  CAS  Google Scholar 

  • Sohail, S. S., Wang, B., Biswas, M. A. S., & Oh, J. H. (2006). Physical, morphological, and barrier properties of edible casein films with wax applications. Journal of Food Science, 71(4), 255–259.

    Article  Google Scholar 

  • Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5, 1–8.

    Article  Google Scholar 

  • Valencia-Chamorro, S. A., Palou, L., del Río, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900.

    Article  CAS  Google Scholar 

  • Xiao, H. X., Lin, Q. L., Liu, G. Q., & Yu, F. X. (2012). A comparative study of the characteristics of cross-linked, oxidized and dual-modified rice starches. Molecules, 17(9), 10946–10957.

    Article  CAS  Google Scholar 

  • Yu, Y., & Wang, J. (2007). Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice. Food Research International, 40(2), 297–303.

    Article  CAS  Google Scholar 

  • Zamudio-Flores, P. B., Bautista-Baños, S., Salgado-Delgado, R., & Bello-Pérez, L. A. (2009). Effect of oxidation level on the dual modification of banana starch: the mechanical and barrier properties of its films. Journal of Applied Polymer Science, 112(2), 822–829.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to CONACyT for PhD grant to Teresita Arredondo Ochoa, and financial support for project No. 166751. We thank MS Ana Lucía Tovar Álvarez for technical support on micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Regalado- González.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, T.A., Almendárez, B.E.G., Reyes, A.A. et al. Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials. Food Bioprocess Technol 10, 103–114 (2017). https://doi.org/10.1007/s11947-016-1800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1800-4

Keywords

Navigation