Skip to main content

Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization


In this work, three active bio-based multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8 % (PHBV8) as support, were developed. To this end, a zein interlayer with or without cinnamaldehyde (CNMA) was directly electrospun onto one side of the PHBV8 film and the following systems were developed: (1) without an outer layer; (2) using a PHBV8 film as outer layer; and (3) using an alginate-based film as outer layer. These multilayer structures were characterized in terms of water vapour and oxygen permeabilities, transparency, intermolecular arrangement and thermal properties. The antimicrobial activity of the active bio-based multilayer systems and the release of CNMA in a food simulant were also evaluated. Results showed that the presence of different outer layers reduced the transport properties and transparency of the multilayer films. The active bio-based multilayer systems showed antibacterial activity against Listeria monocytogenes being the multilayer structure prepared with CNMA and PHBV outer layers (PHBV + zein/CNMA + PHBV) the one that showed the greater antibacterial activity. The release of CNMA depended on the multilayer structures, where both Fick’s and Case II transport—polymer relaxation explained the release of CNMA from the multilayer systems.

Overall, the deposition of electrospun CNMA-loaded zein fibres on a PHBV8 layer is a promising methodology for the development of active bio-based multilayer systems, with a great potential for food packaging applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. ASTM-E96-15 (2011). Standard test methods for water vapor transmission of materials. In A. S. f. T. a. Materials (Ed.), Annual Book of ASTM Standards. Philadelphia.

  2. Balaguer, M. P., Lopez-Carballo, G., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2013). Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International Journal of Food Microbiology, 166(3), 369–377. doi:10.1016/j.ijfoodmicro.2013.08.012.

    CAS  Article  Google Scholar 

  3. Berens, A. R., & Hopfenberg, H. B. (1978). Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer, 19(5), 489–496. doi:10.1016/0032-3861(78)90269-0.

    CAS  Article  Google Scholar 

  4. Bordes, P., Hablot, E., Pollet, E., & Averous, L. (2009). Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 94(5), 789–796. doi:10.1016/j.polymdegradstab.2009.01.027.

    CAS  Article  Google Scholar 

  5. Busolo, M., Torres-Giner, S., & Lagaron, J. M. (2009). Enhancing the gas barrier properties of polylactic acid by means of electrospun ultrathin zein fibers. In ANTEC, proceedings of the 67th annual technical conference, Chicago, IL (pp. 2763–2768))

  6. Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2014). Development of active and nanotechnology-based smart edible packaging systems: physical–chemical characterization. Food and Bioprocess Technology, 7(5), 1472–1482.

    CAS  Article  Google Scholar 

  7. Cerqueira, M. A., Souza, B. W. S., Martins, J. T., & Vicente, A. A. (2010). Improved hydrocolloid-based edible coatings/films systems for food applications. In A. Tiwari (Ed.), Polysaccharides: development, properties and applications (pp. 299–332). New York: Nova Science Publishers.

    Google Scholar 

  8. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films: a comparative study. Food Hydrocolloids, 27(1), 175–184. doi:10.1016/j.foodhyd.2011.07.007.

    CAS  Article  Google Scholar 

  9. Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon Press.

    Google Scholar 

  10. De Azeredo, H. M. C. (2012). Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology, in Press.

  11. Fabra, M., López-Rubio, A., & Lagaron, J. (2015). Three-layer films based on wheat gluten and electrospun PHA. Food and Bioprocess Technology, 8(11), 2330–2340. doi:10.1007/s11947-015-1590-0.

    CAS  Article  Google Scholar 

  12. Fabra, M. J., Busolo, M. A., Lopez-Rubio, A., & Lagaron, J. M. (2013a). Nanostructured biolayers in food packaging. Trends in Food Science & Technology, 31(1), 79–87. doi:10.1016/j.tifs.2013.01.004.

    CAS  Article  Google Scholar 

  13. Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013b). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocolloids, 32(1), 106–114.

    CAS  Article  Google Scholar 

  14. Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocolloids, 39(0), 77–84. doi:10.1016/j.foodhyd.2013.12.023.

    CAS  Article  Google Scholar 

  15. Hutchings, J. B. (1999). Food and colour appearance Gaithersburg, MD: Chapman and Hall Food Science Book, Aspen Publication.

  16. Japanese Industrial Standard (JIS) Z 2801 (2010) (English): Antibacterial products-test for antibacterial activity and efficacy

  17. Jost, V., & Langowski, H.-C. (2015). Effect of different plasticisers on the mechanical and barrier properties of extruded cast PHBV films. European Polymer Journal, 68, 302–312. doi:10.1016/j.eurpolymj.2015.04.012.

    CAS  Article  Google Scholar 

  18. Kujawa, P., Schmauch, G., Viitala, T., Badia, A., & Winnik, F. M. (2007). Construction of viscoelastic biocompatible films via the layer-by-layer assembly of hyaluronan and phosphorylcholine-modified chitosan. Biomacromolecules, 8(10), 3169–3176. doi:10.1021/bm7006339.

    CAS  Article  Google Scholar 

  19. Nostro, A., Scaffaro, R., D’Arrigo, M., Botta, L., Filocamo, A., Marino, A., et al. (2012). Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Applied Microbiology and Biotechnology, 96(4), 1029–1038. doi:10.1007/s00253-012-4091-3.

    CAS  Article  Google Scholar 

  20. Pinheiro, A. C., Bourbon, A. I., Vicente, A. A., & Quintas, M. A. C. (2013). Transport mechanism of macromolecules on hydrophilic bio-polymeric matrices—diffusion of protein-based compounds from chitosan films. Journal of Food Engineering, 116(3), 633–638. doi:10.1016/j.jfoodeng.2012.12.038.

    CAS  Article  Google Scholar 

  21. Plackett, D., & Siro, I. (2011). Polyhydroxyalkanoates (PHAs) for food packaging. In J. M. Lagaron (Ed.), Multifunctional and nanoreinforced polymers for food packaging (pp. 498–526). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  22. Regulation, C. (2011). on plastic materials and articles intended to come into contact with food. In E. Comission (Ed.), N° 10/2011: Official Journal of the European Union.

  23. Scandola, M., Focarete, M. L., Adamus, G., Sikorska, W., Baranowska, I., Świerczek, S., et al. (1997). Polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies. Macromolecules, 30(9), 2568–2574. doi:10.1021/ma961431y.

    CAS  Article  Google Scholar 

  24. Souza, M., Vaz, A. M., Silva, H., Cerqueira, M., Vicente, A., & Carneiro-da-Cunha, M. (2015). Development and characterization of an active chitosan-based film containing quercetin. Food and Bioprocess Technology, 8(11), 2183–2191. doi:10.1007/s11947-015-1580-2.

    CAS  Article  Google Scholar 

  25. Torres-Giner, S., Martinez-Abad, A., Ocio, M. J., & Lagaron, J. M. (2010). Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. Journal of Food Science, 75(6), N69–N79. doi:10.1111/j.1750-3841.2010.01678.x.

    CAS  Article  Google Scholar 

  26. Tran, P. A., Hocking, D. M., & O’Connor, A. J. (2015). In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Materials Science and Engineering: C, 47, 63–69. doi:10.1016/j.msec.2014.11.016.

    CAS  Article  Google Scholar 

Download references


Miguel A. Cerqueira (SFRH/BPD/72753/2010) and Ana I. Bourbon (SFRH/BD/73178/2010) are recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). J.L. Castro-Mayorga is supported by the Administrative Department of Science, Technology and Innovation (Colciencias) of Colombian Government. M. J. Fabra is a recipient of a Ramon y Cajal contract (RyC-2014-158) from the Spanish Ministry of Economy and Competitiveness. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). The support of EU Cost Action MP1206 is gratefully acknowledged.

Author information



Corresponding authors

Correspondence to Miguel A. Cerqueira or María José Fabra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, M.A., Fabra, M.J., Castro-Mayorga, J.L. et al. Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food Bioprocess Technol 9, 1874–1884 (2016).

Download citation


  • Biodegradable polymers
  • Electro-hydrodynamic processing
  • Electrospinning
  • Active packaging
  • Multilayers
  • Polyhydroxyalkanoates