Skip to main content
Log in

Combination of Thermosonication and Pulsed Electric Fields Treatments for Controlling Saccharomyces cerevisiae in Chinese Rice Wine

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the combined effect of thermosonication (TS) and pulsed electric fields (PEF) against Saccharomyces cerevisiae in Chinese rice wine. The effectiveness of standalone TS treatment (35 °C, 750  W, 120 min) on the inactivation of S. cerevisiae was insignificant (0.76 log CFU/mL). However, 2.88 log CFU/mL of S. cerevisiae were inactivated when the standalone PEF treatment with moderate conditions (35 °C, 12 kV/cm, 120 μs) was applied. The combination of TS and PEF had an additive effect on the inactivation of S. cerevisiae, and the sequence applied (TS-PEF or PEF-TS) markedly influenced the inactivation results (P < 0.05). In particular, the microbial inactivation by TS-PEF (3.72 log CFU/mL) was higher than that by PEF-TS (3.48 log CFU/mL); this result indicates that PEF were able to restrain the effect of TS. On the other hand, TEM micrographs of S. cerevisiae after the different treatments showed that the combined techniques resulted in more severe disruptions on cells. Higher cytoplasmic shrinkage and more intracellular material leakage were observed from the TEM observations of the cells treated by TS-PEF. These results may serve as a reference of the potential application of the combined treatment TS-PEF for microbial inactivation in Chinese rice wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abid, M., Jabbar, S., Hu, B., Hashim, M. M., Wu, T., Lei, S. C., Khan, M. A., & Zeng, X. X. (2014). Thermosonication as a potential quality enhancement technique of apple juice. Ultrasonics Sonochemistry, 21(3), 984–990.

    Article  CAS  Google Scholar 

  • Anese, M., De Bonis, M. V., Mirolo, G., & Ruocco, G. (2013). Effect of low frequency, high power pool ultrasonics on viscosity of fluid food: modeling and experimental validation. Journal of Food Engineering, 119(3), 627–632.

    Article  Google Scholar 

  • Bartowsky, E. J. (2009). Bacterial spoilage of wine and approaches to minimize it. Letters in Applied Microbiology, 48(2), 149–156.

    Article  CAS  Google Scholar 

  • Chen, S., & Xu, Y. (2010). The influence of yeast strains on the volatile flavour compounds of Chinese rice wine. Journal of the Institute of Brewing, 116(2), 190–196.

    Article  CAS  Google Scholar 

  • Deak, T., & Beuchat, L. R. (1996). Handbook of food spoilage yeasts. Boca Raton: CRC Press.

    Google Scholar 

  • Donsì, G., Ferrari, G., & Pataro, G. (2007). Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: the effect of electric field unevenness and initial cell concentration. Journal of Food Engineering, 78, 784–792.

    Article  Google Scholar 

  • Gracin, L., Jambrak, A. R., Juretić, H., Dobrović, S., Barukčić, I., Grozdanović, M., & Smoljanić, G. (2015). Influence of high power ultrasound on Brettanomyces and lactic acid bacteria in wine in continuous flow treatment. Applied Acoustics. doi:10.1016/j.apacoust.2015.05.005.

    Google Scholar 

  • Guerrero, S., López-Malo, A., & Alzamora, S. M. (2001). Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innovative Food Science & Emerging Technologies, 2, 31–39.

    Article  Google Scholar 

  • Harrison, S. L., Barbosa-Cánovas, G. V., & Swanson, B. G. (1997). Saccharomyces cerevisiae structural changes induced by pulsed electric field treatment. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 30(3), 236–240.

    Article  CAS  Google Scholar 

  • Huang, E., Mittal, G. S., & Griffiths, M. W. (2006). Inactivation of Salmonella Enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biomedical Engineering, 94(3), 403–413.

    Google Scholar 

  • Huang, K., Yu, L., Liu, D., Gai, L., & Wang, J. (2013). Modeling of yeast inactivation of PEF-treated Chinese rice wine: effects of electric field intensity, treatment time and initial temperature. Foodservice Research International, 54, 456–467.

    Article  CAS  Google Scholar 

  • Huang, K., Jiang, T., Wen, W., Ling, G., & Wang, J. (2014). A comparison of pulsed electric field resistance for three microorganisms with different biological factors in grape juice via numerical simulation. Food and Bioprocess Technology, 7(7), 1981–1995.

    Article  Google Scholar 

  • Jabbar, S., Abid, M., Hu, B., Hashim, M. M., Lei, S., Wu, T., & Zeng, X. (2015). Exploring the potential of thermosonication in carrot juice processing. Journal of Food Science and Technology. doi:10.1007/s13197-015-1847-7.

    Google Scholar 

  • Kuldiloke, J., Eshtiaghi, M., Zenker, M., & Knorr, D. (2007). Inactivation of lemon pectinesterase by thermosonication. International Journal of Food Engineering, 3(2), 3.

    Article  Google Scholar 

  • Li, X., Shen, C., Wu, D., Lu, J., Chen, J., & Xie, G. (2015). Enhancement of urea uptake in Chinese rice wine yeast strain N85 by the constitutive expression of DUR3 for ethyl carbamate elimination. Journal of the Institute of Brewing, 121, 257–261.

    Article  CAS  Google Scholar 

  • Layman, C. N., Sou, I. M., Bartak, R., Ray, C., & Allen, J. S. (2011). Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry. Ultrasonics Sonochemistry, 18(5), 1258–1261.

    Article  CAS  Google Scholar 

  • Longsine-Parker, W., Wang, H., Koo, C., Kim, J., Kim, B., Jayaraman, A., & Han, A. (2013). Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave. Lab on a Chip, 13(11), 2144–2152.

    Article  CAS  Google Scholar 

  • Luo, H., Schmid, F., Grbin, P. R., & Jiranek, V. (2012). Viability of common wine spoilage organisms after exposure to high power ultrasonics. Ultrasonics Sonochemistry, 19(3), 415–420.

    Article  CAS  Google Scholar 

  • Martin, J. F. G., Guillemet, L., Feng, C. H., & Sun, D. W. (2013). Cell viability and proteins release during ultrasound-assisted yeast lysis of light lees in model wine. Food Chemistry, 141(2), 934–939.

    Article  CAS  Google Scholar 

  • Marx, G., Moody, A., & Bermúdez-Aguirre, D. (2011). A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: high hydrostatic pressure, pulsed electric fields and thermo-sonication. International Journal of Food Microbiology, 151(3), 327–337.

    Article  Google Scholar 

  • Noci, F., Walkling-Ribeiro, M., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. International Dairy Journal, 19(1), 30–35.

    Article  Google Scholar 

  • Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2012). Effectiveness of combined pulsed electric field (PEF) and manothermosonication (MTS) for the control of Listeria innocua in a smoothie type beverage. Food Control, 25(2), 621–625.

    Article  Google Scholar 

  • Pataro, G., Senatore, B., Donsì, G., & Ferrari, G. (2011). Effect of electric and flow parameters on PEF treatment efficiency. Journal of Food Engineering, 105(1), 79–88.

    Article  Google Scholar 

  • Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87(3), 207–216.

    Article  CAS  Google Scholar 

  • Puértolas, E., López, N., Condón, S., Raso, J., & Álvarez, I. (2009). Pulsed electric fields inactivation of wine spoilage yeast and bacteria. International Journal of Food Microbiology, 130(1), 49–55.

    Article  Google Scholar 

  • Puértolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010). Potential applications of PEF to improve red wine quality. Trends in Food Science & Technology, 21(5), 247–255.

    Article  Google Scholar 

  • Raso, J., Manas, P., Pagan, R., & Sala, F. J. (1999). Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 5(4), 157–162.

    Article  CAS  Google Scholar 

  • Timmermans, R. A. H., Nierop Groot, M. N., Nederhoff, A. L., van Boekel, M. A. J. S., Matser, A. M., & Mastwijk, H. C. (2014). Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms. International Journal of Food Microbiology, 173, 105–111.

    Article  CAS  Google Scholar 

  • Tsukamoto, I., Yim, B., Stavarache, C. E., Furuta, M., Hashiba, K., & Maeda, Y. (2004). Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrasonics Sonochemistry, 11(2), 61–65.

    Article  CAS  Google Scholar 

  • Turtoi, M. (2014). Inactivation of Saccharomyces cerevisiae using new non-thermal technologies. A review. Roumanian biotechnological letters, 19(1), 8901–8909.

    CAS  Google Scholar 

  • Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2009). Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food and Bioproducts Processing, 87(2), 102–107.

    Article  Google Scholar 

  • Xin, Q., Zhang, X., Li, Z., & Lei, L. (2009). Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound. Ultrasonics Sonochemistry, 16(1), 1–3.

    Article  CAS  Google Scholar 

  • Xu, Y. T., Zhang, L. F., Bailina, Y., Ge, Z., Ding, T., Ye, X. Q., & Liu, D. H. (2014). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72–81.

    Article  CAS  Google Scholar 

  • Zhai, X. Y., Chi, J. F., Tang, W. L., Ji, Z., Zhao, F., Jiang, C. J., Lv, H. T., & Guo, H. Y. (2014). Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2,-9 expression and improve atherosclerotic plaque in LDL-receptor-knockout mice. Journal of Pharmaceutical Sciences, 125(2), 132–141.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Yao, W. (2008). Separation and identification of microorganisms from spoiled traditional aging rice wine. China Brewing, 21, 62–66.

    Google Scholar 

  • Zhang, R., Zheng, N., Liu, H., & Wang, L. (2015). Influencing factors of dielectric breakdown in the PEF treatment chamber. IEEE Transactions on Plasma Science, 43(2), 610–616.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (31271613/C130102) and China Postdoctoral Science Foundation (2014M551748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang.

Additional information

Chenang Lyu and Kang Huang contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, C., Huang, K., Yang, N. et al. Combination of Thermosonication and Pulsed Electric Fields Treatments for Controlling Saccharomyces cerevisiae in Chinese Rice Wine. Food Bioprocess Technol 9, 1854–1864 (2016). https://doi.org/10.1007/s11947-016-1769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1769-z

Keywords

Navigation