Skip to main content
Log in

Role of Whey Components in the Kinetics and Thermodynamics of β-Lactoglobulin Unfolding and Aggregation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The optimisation of dairy unit operations involving heat transfer requires the control of fouling and aggregation phenomena following the denaturation of thermosensitive proteins, in particular β-lactoglobulin (β-lg). This study intends to give a better view of the influence of whey components (whey proteins, lactose, and minerals such as calcium) on β-lg denaturation through a combined kinetic and thermodynamic approach. β-lg denaturation in model solutions of increasing complexity (pure β-lg solution, whey protein solution, and two model wheys differing in mineral content) was characterised at temperatures ranging from 64.5 to 98 °C by following the evolution of soluble β-lg concentration with HPLC. It was demonstrated that whatever the model solution composition, a two-step mechanism (unfolding followed by aggregation) of 1.5-order kinetics could be adopted to describe β-lg denaturation reaction, as the temperature dependence of the denaturation reaction rate was properly fitted by Arrhenius equation. The dependency of kinetic and thermodynamic parameters on solution composition indicated that the presence of whey proteins enhanced β-lg aggregation, whereas lactose showed a small protective effect against β-lg unfolding. Additionally, minerals, especially calcium, tended to stabilise β-lg native state while increasing β-lg aggregation rates. However, at high mineral content, calcium influence could be hindered or even reversed, presumably owing to a lower bioavailability due to complexation with anions such as inorganic phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, E., & Smith, P. (2001). A review of particle agglomeration. AEAT/R/PSEG, Vol. 398. http://munster.tamu.edu/Web_page/Research/Ecoli/AEAT-R-PSEG-0398.doc Accessed 7 Apr 2016.

  • Ames, J. M. (1998). Applications of the Maillard reaction in the food industry. Food Chemistry, 62(4), 431–439.

    Article  CAS  Google Scholar 

  • Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2008). Loss of solubility of alpha-lactalbumin and beta-lactoglobulin during the spray drying of whey proteins. LWT - Foos Science and Technology, 41(2), 270–277.

    Article  CAS  Google Scholar 

  • Anema, S. G., & McKenna, A. B. (1996). Reactions kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. Journal of Agricultural and Food Chemistry, 44, 422–428.

    Article  CAS  Google Scholar 

  • Anema, S. G., Lee, S. K., & Klostermeyer, H. (2006). Effect of protein, nonprotein-soluble components, and lactose concentrations on the irreversible thermal denaturation of β-lactoglobulin and α-lactalbumin in skim milk. Journal of Agricultural and Food Chemistry, 54(19), 7339–7348.

    Article  CAS  Google Scholar 

  • Belmar-Beiny, M. T., Gotham, S. M., Paterson, W. R., & Fryer, P. J. (1993). The effect of Reynolds number and fluid temperature in whey protein fouling. Journal of Food Engineering, 19, 119–139.

    Article  Google Scholar 

  • Bouvier, L., Moreau, A., Ronse, G., Six, T., Petit, J., & Delaplace, G. (2014). A CFD model as a tool to simulate β-lactoglobulin heat-induced denaturation and aggregation in a plate heat exchanger. Journal of Food Engineering, 136, 56–63.

    Article  CAS  Google Scholar 

  • Boxler, C., Augustin, W., & Scholl, S. (2013). Fouling of milk components on DLC coated surfaces at pasteurization and UHT temperatures. Food and Bioproducts Processing, 91(4), 336–347.

    Article  CAS  Google Scholar 

  • Burton, H. (1968). Deposits of whole milk in treatment plants: a review and discussion. Journal of Dairy Reasearch, 35, 317–330.

    Article  Google Scholar 

  • Changani, S. D., Belmar-Beiny, M. T., & Fryer, P. J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science, 14, 392–406.

    Article  CAS  Google Scholar 

  • Chobert, J.-M. (2012). Milk protein tailoring to improve functional and biological properties. Journal of Bioscience and Biotechnology, 1(3), 171–197.

    Google Scholar 

  • Croguennec, T., Leng, N., Hamon, P., Rousseau, F., Jeantet, R., & Bouhallab, S. (2014). Caseinomacropeptide modifies the heat-induced denaturation-aggregation process of β-Lactoglobulin. International Dairy Journal, 36, 55–64.

    Article  CAS  Google Scholar 

  • Dannenberg, F., & Kessler, H.G. (1986). In Le Maguer, M. & Jelen, P. (Ed.), Food engineering and process applications (pp. 335–346). Amsterdam (Netherlands): Elsevier Applied Science.

  • De Jong, P., Bouman, S., & Van der Linden, H. J. L. J. (1992). Fouling of heat treatment equipment in relation to the denaturation of ß-lactoglobulin. Journal of the Society of Dairy Technology, 45, 3–8.

    Article  Google Scholar 

  • De Wit, J. N. (1990). Thermal stability and functionality of whey proteins. Journal of Dairy Science, 73, 3602–3612.

    Article  Google Scholar 

  • Donato, L., Schmitt, C., Bovetto, L., & Rouvet, M. (2009). Mechanism of formation of stable heat-induced ß-lactoglobulin microgels. International Dairy Journal, 19, 295–306.

    Article  CAS  Google Scholar 

  • Doultani, S., Tuhran, K. N., & Etzel, M. R. (2004). Fractionation of proteins from whey using cation exchange chromatography. Process Biochemistry, 39, 1737–1743.

    Article  CAS  Google Scholar 

  • Erabit, N., Flick, D., & Alvarez, G. (2013). Effect of calcium chloride and moderate shear on β-lactoglobulin aggregation in processing-like conditions. Journal of Food Engineering, 115, 63–72.

    Article  CAS  Google Scholar 

  • Erabit, N., Flick, D., & Alvarez, G. (2014). Formation of β-lactoglobulin aggregates during thermomechanical treatments under controlled shear and temperature conditions. Journal of Food Engineering, 120, 57–68.

    Article  CAS  Google Scholar 

  • Erabit, N., Ndoye, F. T., Flick, D., & Alvarez, G. (2015). A Population Balance Model integrating some specificities of the β-lactoglobulin thermally-induced aggregation. Journal of Food Engineering, 144, 66–76.

    Article  CAS  Google Scholar 

  • Ferreira, I. M. P. L. V. O., Mendes, E., & Ferreira, M. A. (2001). HPLC/UV analysis of proteins in dairy products using a hydrophobic interaction chromatographic column. Analytical Sciences, 17, 499–501.

    Article  CAS  Google Scholar 

  • Fryer, P. J., Christian, G. K., & Liu, W. (2006). How hygiene happens: physics and chemistry of cleaning. International Journal of Dairy Technology, 59, 76–84.

    Article  CAS  Google Scholar 

  • Gaiani, C., Mullet, M., Arab-Tehrany, E., Jacquot, M., Perroud, C., Renard, A., & Scher, J. (2011). Milk proteins differentiation and competitive adsorption during spray-drying. Food Hydrocolloids, 25, 983–990.

    Article  CAS  Google Scholar 

  • Galani, D., & Apenten, R. K. O. (1999). Heat-induced denaturation and aggregation of ß-lactoglobulin: kinetics of formation of hydrophobic and disulphide-linked aggregates. International Journal of Food Science and Technology, 34, 467–476.

    Article  CAS  Google Scholar 

  • Gernigon, G., Schuck, P., & Jeantet, R. (2010). Processing of Mozzarella cheese wheys and stretchwaters: A preliminary review. Dairy Science and Technology, 90, 27–46.

  • Gotham, S. M., Fryer, P. J., & Pritchard, A. M. (1989). Model studies of food fouling. In H. G. Kessler & D. B. Lund (Eds.), Fouling and cleaning in food processing (pp. 1–13). Prien (Germany): University of Munich.

    Google Scholar 

  • Gotham, S. M., Fryer, P. J., & Pritchard, A. M. (1992). ß-lactoglobulin denaturation and aggregation reactions and fouling deposit formation: a DSC study. International Journal of Food Science and Technology, 27, 313–327.

    Article  CAS  Google Scholar 

  • Grijspeerdt, K., Mortier, L., De Block, J., & Van Renterghem, R. (2004). Applications of modelling to optimise ultra-high temperature milk heat exchangers with respect to fouling. Food Control, 15, 117–130.

    Article  CAS  Google Scholar 

  • Havea, P., Singh, H., & Creamer, L. K. (2001). Characterization of heat-induced aggregates of ß-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment. Journal of Dairy Research, 68, 483–497.

    Article  CAS  Google Scholar 

  • Jeyarajah, S., & Allen, J. C. (1994). Calcium binding and salt-induced structural changes of native and preheated beta-lactoglobulin. Journal of Agricultural and Food Chemistry, 42, 80–85.

    Article  CAS  Google Scholar 

  • Khaldi, M., Ronse, G., André, C., Blanpain-Avet, P., Bouvier, L., Six, T., Bornaz, S., Croguennec, T., Jeantet, R., & Delaplace, G. (2015). Denaturation kinetics of whey protein isolate solutions and fouling mass distribution in a plate heat exchanger. International Journal of Chemical Engineering, 2015(139638), 10. doi:10.1155/2015/139638.

    Google Scholar 

  • Khaldi, M., Ronse, G., André, C., Blanpain-Avet, P., Bouvier, L., Six, T., Bornaz, S., Croguennec, T., Jeantet, R., & Delaplace, G. (2016). Denaturation kinetics of whey protein isolate solutions and fouling mass distribution in a plate heat exchanger. International Journal of Chemical Engineering, 2016(4924250), 2. doi:10.1155/2016/4924250.

    Google Scholar 

  • Kilara, A. (1994). Chapter 11—whey protein functionality. In N. S. Hettiarachchy & G. R. Ziegler (Eds.), Protein functionality in food systems (pp. 335–355). New York (USA): CRC Press.

    Google Scholar 

  • Labouré, H., Cases, E., & Cayot, P. (2004). Heat induced ß-lactoglobulin polymerization: role of change in medium permittivity. Food Chemistry, 85, 399–406.

    Article  Google Scholar 

  • Labuza, T. P. (1980). Enthalpy/entropy compensation in food reactions. Food Technology, 67, 67–77.

    Google Scholar 

  • Loveday, S. M. (2016). β-lactoglobulin heat denaturation: a critical assessment of kinetic modelling. International Dairy Journal, 52, 92–100.

    Article  CAS  Google Scholar 

  • Lowe, E. K., Anema, S. G., Bienvenue, A., Boland, M. J., Creamer, L. K., & Jiménez-Flores, R. (2004). Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-lactoglobulin and ĸ-casein. Journal of Agricultural and Food Chemistry, 52(25), 7669–7680.

    Article  CAS  Google Scholar 

  • Mahdi, Y., Mouheb, A., & Oufer, L. (2009). A dynamic model for milk fouling in a plate heat exchanger. Applied Mathematical Modelling, 33, 648–662.

    Article  Google Scholar 

  • Mekmene, O. (2010). Comportement de la fraction minérale laitière en fonction des conditions physicochimiques : de la précipitation des sels de phosphate de calcium à la prédiction des équilibres minéraux du lait. PhD Thesis, AgroCampus Ouest, Rennes, France.

  • Mulvihill, D. M., & Donovan, M. (1987). Whey proteins and their thermal denaturation—a review. Irish Journal of Food Science and Technology, 11, 43–75.

    CAS  Google Scholar 

  • Mulvihill, D. M., & Kinsella, J. E. (1987). Gelation characteristics of whey proteins and ß-lactoglobulin. Food Technology, 41(9), 102–111.

    CAS  Google Scholar 

  • Nicolai, T., Britten, M., & Schmitt, C. (2011). β-lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962.

    Article  CAS  Google Scholar 

  • Nielsen, B. T., Singh, H., & Latham, J. M. (1995). Aggregation of bovine ß-lactoglobulin A and B on heating at 75 °C. International Dairy Journal, 6, 519–527.

    Article  Google Scholar 

  • Oldfield, D. J., Singh, H., & Taylor, M. W. (2005). Kinetics of heat induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration. Journal of Dairy Research, 72, 369–378.

    Article  CAS  Google Scholar 

  • Palazolo, G., Rodriguez, F., Farrugia, B., Pico, G., & Delorenzi, N. (2000). Heat treatment of ß-lactoglobulin: structural changes studied by partioning and fluorescence. Journal of Agricultural and Food Chemistry, 48, 3817–3822.

    Article  CAS  Google Scholar 

  • Parris, N., & Baginski, M. A. (1991). A rapid method for the determination of whey protein denaturation. Journal of Dairy Science, 74, 58–64.

    Article  CAS  Google Scholar 

  • Patel, H. A., Anema, S. G., Holroyd, S. E., Singh, H., & Creamer, L. K. (2007). Methods to determine denaturation and aggregation of proteins in low-, medium- and high-heat skim milk powders. Dairy Science and Technology, 87, 251–268.

    Article  CAS  Google Scholar 

  • Pereira, R. N., Teixeira, J. A., & Vicente, A. A. (2011). Exploring the denaturation of whey proteins upon application of moderate electric fields: a kinetic and thermodynamic study. Journal of Agricultural and Food Chemistry, 59, 11589–11597.

    Article  CAS  Google Scholar 

  • Petit, J., Herbig, A.-L., Moreau, A., & Delaplace, G. (2011). Calcium influence on beta-lactoglobulin denaturation kinetic rates: implications in unfolding/aggregation mechanisms. Journal of Dairy Science, 94, 5794–5810.

    Article  CAS  Google Scholar 

  • Petit, J., Herbig, A.-L., Moreau, A., Le Page, J.-F., Six, T., & Delaplace, G. (2012). Granulomorphometry: a suitable tool for identifying hydrophobic and disulfide bonds in beta-lactoglobulin aggregates. Application to the study of beta-lactoglobulin aggregation mechanism between 70 and 95 °C. Journal of Dairy Science, 95, 4188–4202.

    Article  CAS  Google Scholar 

  • Petit, J., Six, T., Moreau, A., Ronse, G., & Delaplace, G. (2013). β-lactoglobulin denaturation, aggregation, and fouling in a plate heat-exchanger: pilot-scale experiments and dimensional analysis. Chemical Engineering Science, 101, 432–450.

    Article  CAS  Google Scholar 

  • Prabakaran, S., & Damodaran, S. (1997). Thermal unfolding of beta-lactoglobulin: characterization of initial unfolding events responsible for heat-induced aggregation. Journal of Agricultural and Food Chemistry, 45, 4303–4308.

    Article  CAS  Google Scholar 

  • Relkin, P. (1996). Thermal unfolding of ß-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Critical Reviews in Food Science and Nutrition, 36, 565–601.

    Article  CAS  Google Scholar 

  • Rouyer, B. (2012). World trade of dried dairy products (Proceedings of the 5th International Symposium on Spray-Dried Dairy Products, p. 25).

    Google Scholar 

  • Santos, O., Nylander, T., Paulsson, M., & Tragardh, A. C. (2006a). Whey protein adsorption onto steel-surfaces—effect of temperature, flow rate, residence time and aggregation. Journal of Food Engineering, 74, 468–483.

    Article  CAS  Google Scholar 

  • Santos, O., Nylander, T., Schillén, K., Paulsson, M., & Tragardh, A. C. (2006b). Effect of surface and bulk solution properties on the adsorption of whey protein onto steel surfaces at high temperature. Journal of Food Engineering, 73, 174–189.

    Article  CAS  Google Scholar 

  • Sava, N., Van der Plancken, I., Claeys, W., & Hendrickx, M. (2005). The kinetics of heat-induced structural changes of ß-lactoglobulin. Journal of Dairy Science, 88, 1646–1653.

    Article  CAS  Google Scholar 

  • Schmitt, C., Bovay, C., Rouvet, M., Shojaei-Rami, S., & Kolodziejczyk, E. (2007). Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial and foaming properties. Langmuir, 23, 4155–4166.

    Article  CAS  Google Scholar 

  • Schokker, E. P., Singh, H., & Creamer, L. K. (2000). Heat-induced aggregation of beta-lactoglobulin A and B with alpha-lactalbumin. International Dairy Journal, 10(12), 843–853.

  • Simmons, M. J. H., Jayaraman, P., & Fryer, P. J. (2007). The effect of temperature and shear rate upon the aggregation of whey protein and its implication for milk fouling. Journal of Food Engineering, 79, 517–528.

    Article  CAS  Google Scholar 

  • Simons, J.-W. F. A., Kosters, H. A., Visschers, R. W., & De Jongh, H. H. J. (2002). Role of calcium as trigger in thermal beta-lactoglobulin aggregation. Archives of Biochemistry and Biophysics, 406, 143–152.

    Article  CAS  Google Scholar 

  • Tolkach, A., & Kulozik, U. (2007). Reaction kinetic pathway of reversible and irreversible thermal denaturation of ß-lactoglobulin. Dairy Science and Technology, 87, 301–315.

    Article  CAS  Google Scholar 

  • Verheul, M., Roefs, S. P. F. M., & De Kruif, K. G. (1998). Kinetics of heat-induced aggregation of beta-lactoglobulin. Journal of Agricultural and Food Chemistry, 46, 896–903.

    Article  CAS  Google Scholar 

  • Vetri, V., & Militello, V. (2004). Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophysical Chemistry, 113, 83–91.

    Article  Google Scholar 

  • Visser, J., & Jeurnink, T. J. M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14, 407–424.

    Article  CAS  Google Scholar 

  • Xiong, Y. L. (1992). Influence of pH and ionic environment on thermal aggregation of whey proteins. Journal of Agricultural and Food Chemistry, 40, 380–384.

    Article  CAS  Google Scholar 

  • Zúñiga, R. N., Tolkach, A., Kulozik, U., & Aguilera, J. M. (2010). Kinetics of formation and physicochemical characterization of thermally-induced β-lactoglobulin aggregates. Journal of Food Science, 75(5), 261–268.

    Article  Google Scholar 

Download references

Acknowledgments

This work, constituting a part of the PERE (Procédé Electromagnétique de Réduction d’Encrassement, i.e. Eletromagnetic device for the reduction of milk fouling) project, has been funded by INRA Transfert within the framework of the 2010 patent valorisation campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Petit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, J., Moreau, A., Ronse, G. et al. Role of Whey Components in the Kinetics and Thermodynamics of β-Lactoglobulin Unfolding and Aggregation. Food Bioprocess Technol 9, 1367–1379 (2016). https://doi.org/10.1007/s11947-016-1726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1726-x

Keywords

Navigation