Ratiometric Oxygen Imaging to Predict Oxygen Diffusivity in Oak Wood During Red Wine Barrel Aging

Abstract

In this work, we present a high-resolution oxygen imaging approach to study the two-dimensional oxygen distribution inside an oak stave in contact with wine and that applies the series resistance model to explain the dynamic evolution of oak wood oxygen transfer rate (OTR). Oxygen flux throughout the oak stave has been studied by considering the wood as a permeable membrane with moisture content (MC) in a decreasing gradient from the wine-contacting side of the oak stave to the side in contact with atmospheric air in cellar conditions. The presence of different levels of liquid across the thickness of the wet stave modifies the oxygen diffusion flux, as the diffusion coefficient of oxygen in water is four orders of magnitude lower than in air. The stave resembles a multilayered membrane, where wood with an MC over the fiber saturation point represents a distinct layer. To that end, three simultaneous measurements were made, namely the MC profile of the wood within the thickness of the stave at different liquid-wood contact times, the OTR of the stave at those times, and finally the oxygen concentration profile within the thickness of the stave using planar optical sensors, a color camera, and ratiometric image analysis. The results show heat flux and oxygen flux that is analogous to that in a multilayer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. ASTM. (2015). ASTM D4442—15 standard test methods for direct moisture content measurement of wood and wood-based materials.

  2. del Alamo-Sanza, M., & Nevares, I. (2012). PCT/ES2012/070084 device for measuring the permeability and diffusivity of gases in porous materials and method for measuring said parameters using the device. (W.-W. I. P. Organization, Ed.). PCT/ES2012/070084 International . http://patentscope.wipo.int/search/en/WO2012107625

  3. del Alamo-Sanza, M., & Nevares, I. (2014). Recent advances in the evaluation of the oxygen transfer rate in oak barrels. Journal of Agricultural and Food Chemistry, 62(35), 8892–8899. doi:10.1021/jf502333d.

    Article  Google Scholar 

  4. Demas, J. N., DeGraff, B. A., & Xu, W. (1995). Modeling of luminescence quenching-based sensors: comparison of multisite and nonlinear gas solubility models. Analytical Chemistry, 67(8), 1377–1380. doi:10.1021/ac00104a012.

    CAS  Article  Google Scholar 

  5. Feuillat, F. (1996). Contribution à l’étude des phénomènes d’échanges bois/vin/atmosphère à l’aide d’un “fût” modèle. Relations avec l’anatomie du bois de chêne (*Quercus robur* L., *Quercus petraea* Liebl.). Lab. de Recherches en Sciences Forestières de l’ENGREF. Nancy; France: Ecole Nationale du Génie Rural des Eaux et des Forêts.

  6. Gorvud, M. R., & Arganbrigh, D. G. (1980). Comparison of methods for preparation of moisture content gradient sections, 12(1), 7–11.

  7. Graff, G. L., Williford, R. E., & Burrows, P. E. (2004). Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation. Journal of Applied Physics, 96(4), 1840. doi:10.1063/1.1768610.

    CAS  Article  Google Scholar 

  8. Gu, H. M., & Zink-Sharp, A. (1999). Measurement of moisture gradients during kiln-drying. Forest Products Journal, 49(4), 77–86.

    Google Scholar 

  9. Hansmann, C., Gindl, W., & Wimmer, R. (2002). Permeability of wood—a review. Wood Research, 47(4), 1–16.

    Google Scholar 

  10. Hicks, W. T., & Harmon, M. E. (2002). Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest, USA. Plant and Soil, 243(1), 67–79. doi:10.1023/a:1019906101359.

    CAS  Article  Google Scholar 

  11. Huang, H. I., Sarkanen, K. V., & Johanson, L. N. (1977). Diffusion of dissolved oxygen in liquid-saturated Douglas fir sapwood. Wood Science and Technology, 11(3), 225–236. doi:10.1007/bf00365617.

    CAS  Article  Google Scholar 

  12. Larsen, M., Borisov, S. M., Grunwald, B., Klimant, I., & Glud, R. N. (2011). A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing. Limnology and Oceanography: Methods, 9(9), 348–360. doi:10.4319/lom.2011.9.348.

    CAS  Article  Google Scholar 

  13. Liebsch, G., Klimant, I., Frank, B., Holst, G., & Wolfbeis, O. S. (2000). Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors. Applied Spectroscopy, 54(4), 548–559.

    CAS  Article  Google Scholar 

  14. Mcmillen, J. M. (1955). Drying stresses in Red Oak. Forest Products Journal, 5(1), 71–76. http://www.fpl.fs.fed.us/documnts/pdf1955/mcmil55b.pdf.

    Google Scholar 

  15. Mehta, G., Mehta, K., Sud, D., Song, J. W., Bersano-Begey, T., Futai, N., et al. (2007). Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomedical Microdevices, 9(2), 123–34. doi:10.1007/s10544-006-9005-7.

    CAS  Article  Google Scholar 

  16. Mugnai, S., & Mancuso, S. (2010). Oxygen transport in the sapwood of trees. In S. Mancuso & S. Shabala (Eds.), Waterlogging signalling and tolerance in plants (pp. 61–75). Berlin Heidelberg: Springer. doi:10.1007/978-3-642-10305-6_4.

    Google Scholar 

  17. Nevares, I., & del Alamo-Sanza, M. (2015). Oak stave oxygen permeation: a new tool to make barrels with different wine oxygenation potentials. Journal of Agricultural and Food Chemistry, 63(4), 1268–1275. doi:10.1021/jf505360r.

    CAS  Article  Google Scholar 

  18. Nevares, I., Crespo, R., González, C., & del Alamo-Sanza, M. (2014). Imaging of oxygen permeation in the oak wood of wine barrels using optical sensors and a colour camera. Australian Journal of Grape and Wine Research, 20(3), 353–360.

    CAS  Article  Google Scholar 

  19. Peterson, R. G. (1976). Formation of reduced pressure in barrels during wine aging. American Journal of Enology and Viticulture, 27(2), 80–81.

    Google Scholar 

  20. Piringer, O. G., & Baner, A. L. (2000). Plastic packaging materials for food : barrier function, mass transport, quality assurance, and legislation. Weinheim; New York: Wiley-VCH.

    Google Scholar 

  21. Rosenkilde, A. (2002). Moisture content profiles and surface phenomena during drying of wood. KTH-Royal Institute of Technology.

  22. Ruiz de Adana, S. M. (2002). Aplicación de la Dinámica de Fluidos Computacional al Control de las mermas de vino en naves de crianza climatizadas. Ingeniería mecánica. La Rioja: Universidad de La Rioja.

    Google Scholar 

  23. Ruiz de Adana, M., López, L. M., & Sala, J. M. (2005). A Fickian model for calculating wine losses from oak casks depending on conditions in ageing facilities. Applied Thermal Engineering, 25(5-6), 709–718.

    Article  Google Scholar 

  24. Sorz, J., & Hietz, P. (2006). Gas diffusion through wood: implications for oxygen supply. Trees - Structure and Function, 20(1), 34–41. doi:10.1007/s00468-005-0010-x.

    Article  Google Scholar 

  25. Sud, D., Mehta, G., Mehta, K., Linderman, J., Takayama, S., & Mycek, M.-A. (2006). Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. Journal of Biomedical Optics, 11(5), 050504. doi:10.1117/1.2355665.

    Article  Google Scholar 

  26. Ungerböck, B., Mistlberger, G., Charwat, V., Ertl, P., & Mayr, T. (2010). Oxygen imaging in microfluidic devices with optical sensors applying color cameras. Procedia Engineering, 5(0), 456–459. doi:10.1016/j.proeng.2010.09.145.

    Article  Google Scholar 

  27. Ungerböck, B., Charwat, V., Ertl, P., & Mayr, T. (2013). Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. Lab on a Chip, 13(8), 1593–1601. doi:10.1039/C3LC41315B.

    Article  Google Scholar 

  28. Ungerböck, B., Pohar, A., Mayr, T., & Plazl, I. (2013). Online oxygen measurements inside a microreactor with modeling of transport phenomena. Microfluidics and Nanofluidics, 14(3-4), 565–574. doi:10.1007/s10404-012-1074-8.

    Article  Google Scholar 

  29. Vivas, N. (1999). Modélisation et calcul du bilan des apports d’oxygène au cours de l’élevage des vins rouges. III - Interprétation des bilans et maitrise des apports d’oxygène. Progrès Agricole et Viticole, 116(1), 16–18.

    Google Scholar 

  30. Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., & Nonier, M. F. (2003). Mise en évidence du passage de l’oxygène au travers des douelles constituant les barriques par l’utilisation d’un dispositif original de mesure de la porosité du bois. Premiers résultats. Sciences des Aliments, 23(5-6), 655–678. doi:10.3166/sda.23.655-678.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to María del Alamo-Sanza.

Ethics declarations

Funding

This work was financed by the Ministerio de Ciencia e Innovacion, Ministerio de Economía y Competitividad and the European Regional Development Fund (MICINN-FEDER, AGL2011-26931 and MINECO-FEDER, AGL2014-54602-P) and by the Junta de Castilla y León (VA-086A11-2, VA124U14) from Spain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nevares, I., Mayr, T., Baro, J.A. et al. Ratiometric Oxygen Imaging to Predict Oxygen Diffusivity in Oak Wood During Red Wine Barrel Aging. Food Bioprocess Technol 9, 1049–1059 (2016). https://doi.org/10.1007/s11947-016-1695-0

Download citation

Keywords

  • Ratiometric oxygen imaging
  • Oak wood barrel
  • Oxygen diffusion coefficient
  • Moisture content
  • OTR