Skip to main content
Log in

Heat-Induced Aggregation Properties of Whey Proteins as Affected by Storage Conditions of Whey Protein Isolate Powders

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The control of storage as any other manufacturing steps of dairy powders is essential to preserve protein functional properties. This study aimed to determine the effects of different storage conditions on both protein denaturation and protein lactosylation in whey protein isolate (WPI) powder, and also on heat-induced aggregation. Two different storage temperature conditions (20 and 40 °C) were studied over 15 months. Our results showed that protein lactosylation progressively increased in WPI powders over 15 months at 20 °C, but heat-induced aggregation properties did not significantly differ from non-aged WPI. On the other hand, powders presented a high level of denaturation and aggregation at 40 °C from the first 2 weeks of storage, involving first protein lactosylation and then aggregation in the dry state. This was correlated with an increasing Browning Index from 15 days of storage. These changes occurred with a decrease in aggregate size after heat treatment at 5.8 ≤ pH ≤ 6.6 and modification of heat-induced aggregate shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HPLC:

High-performance liquid chromatography

TFA:

Trifluoroacetique acid

DLS:

Dynamic light scattering

TEM:

Transmission electronic microscopy

References

  • Anema, S. G., Pinder, D. N., Hunter, R. J., & Hemar, Y. (2006). Effects of storage temperature on the solubility of milk protein concentrate (MPC85). Food Hydrocolloids, 20(2–3), 386–393.

    Article  CAS  Google Scholar 

  • Ayache, J., Beaunier, L., Boumendil, J. P.-, Ehret, G., & Laub, D. (2007). Guide de préparation des échantillons pour la microscopie électronique en transmission: Techniques. Publications de l’Université de Saint-Étienne.

  • Aymard, P., Gimel, J. C., Nicolai, T., & Durand, D. (1996). Experimental evidence for a two-step process in the aggregation of β-lactoglobulin at pH 7. In Journal de chimie physique (Vol. 93, pp. 987–997).

  • Bromley, E. H. C., Krebs, M. R. H., & Donald, A. M. (2006). Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. The European Physical Journal E, 21(2), 145–152.

    Article  CAS  Google Scholar 

  • Buera, M. D. P., Chirife, J., Resnik, S. L., & Wetzler, G. (1987). Nonenzymatic browning in liquid model systems of high water activity: kinetics of color changes due to Maillard’s reaction between different single sugars and glycine and comparison with caramelization browning. Journal of Food Science, 52(4), 1063–1067.

    Article  Google Scholar 

  • Burin, L., Jouppila, K., Roos, Y., Kansikas, J., & del P Buera, M. (2000). Color Formation in Dehydrated Modified Whey Powder Systems As Affected by Compression and Tg. Journal of Agricultural and Food Chemistry, 48(11), 5263–5268.

    Article  CAS  Google Scholar 

  • Croguennec, T., O’Kennedy, B. T., & Mehra, R. (2004). Heat-induced denaturation/aggregation of β-lactoglobulin A and B: kinetics of the first intermediates formed. International Dairy Journal, 14(5), 399–409.

    Article  CAS  Google Scholar 

  • Da Silva Pinto, M., Bouhallab, S., De Carvalho, A. F., Henry, G., Putaux, J.-L., & Leonil, J. (2012). Glucose Slows Down the Heat-Induced Aggregation of β-Lactoglobulin at Neutral pH. Journal of Agricultural and Food Chemistry, 60(1), 214–219.

    Article  Google Scholar 

  • Donato, L., Schmitt, C., Bovetto, L., & Rouvet, M. (2009). Mechanism of formation of stable heat-induced β-lactoglobulin microgels. International Dairy Journal, 19(5), 295–306.

    Article  CAS  Google Scholar 

  • Enomoto, H., Li, C.-P., Morizane, K., Ibrahim, H. R., Sugimoto, Y., Ohki, S., et al. (2007). Glycation and phosphorylation of β-lactoglobulin by dry-heating: effect on protein structure and some properties. Journal of Agricultural and Food Chemistry, 55(6), 2392–2398.

    Article  CAS  Google Scholar 

  • Fyfe, K. N., Kravchuk, O., Le, T., Deeth, H. C., Nguyen, A. V., & Bhandari, B. (2011). Storage induced changes to high protein powders: influence on surface properties and solubility. Journal of the Science of Food and Agriculture, 91(14), 2566–2575.

    Article  CAS  Google Scholar 

  • Gaiani, C., Schuck, P., Scher, J., Ehrhardt, J. J., Arab-Tehrany, E., Jacquot, M., & Banon, S. (2009). Native phosphocaseinate powder during storage: lipids released onto the surface. Journal of Food Engineering, 94(2), 130–134.

    Article  CAS  Google Scholar 

  • Giroux, H. J., Houde, J., & Britten, M. (2010). Preparation of nanoparticles from denatured whey protein by pH-cycling treatment. Food Hydrocolloids, 24(4), 341–346.

    Article  CAS  Google Scholar 

  • Guilmineau, F., & Kulozik, U. (2006). Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 1: effect of the heating time. Food Hydrocolloids, 20(8), 1105–1113.

    Article  CAS  Google Scholar 

  • Gulzar, M., Bouhallab, S., Jeantet, R., Schuck, P., & Croguennec, T. (2011). Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins. Food Chemistry, 129(1), 110–116.

    Article  CAS  Google Scholar 

  • Gulzar, M., Bouhallab, S., Jardin, J., Briard-Bion, V., & Croguennec, T. (2013). Structural consequences of dry heating on alpha-lactalbumin and beta-lactoglobulin at pH 6.5. Food Research International, 51(2), 899–906.

    Article  CAS  Google Scholar 

  • Guyomarc’h, F., Warin, F., Donald Muir, D., & Leaver, J. (2000). Lactosylation of milk proteins during the manufacture and storage of skim milk powders. International Dairy Journal, 10(12), 863–872.

    Article  Google Scholar 

  • Guyomarc’h, F., Famelart, M.-H., Henry, G., Gulzar, M., Leonil, J., Hamon, P., et al. (2014). Current ways to modify the structure of whey proteins for specific functionalities—a review. Dairy Science & Technology, 1–20.

  • Haque, E., Bhandari, B. R., Gidley, M. J., Deeth, H. C., & Whittaker, A. K. (2011). Ageing-induced solubility loss in milk protein concentrate powder: effect of protein conformational modifications and interactions with water. Journal of the Science of Food and Agriculture, 91(14), 2576–2581.

    Article  CAS  Google Scholar 

  • Havea, P. (2006). Protein interactions in milk protein concentrate powders. International Dairy Journal, 16(5), 415–422.

    Article  CAS  Google Scholar 

  • Hoffmann, M. A. M., & van Mil, P. J. J. M. (1999). Heat-Induced Aggregation of β-Lactoglobulin as a Function of pH. Journal of Agricultural and Food Chemistry, 47(5), 1898–1905.

    Article  CAS  Google Scholar 

  • Ipsen, R., & Hansen, P. S. (1988). Factors affecting the storage stability of whole milk powder. Beretning. Statens Mejeriforsoeg (Denmark).

  • Jones, O. G., Adamcik, J., Handschin, S., Bolisetty, S., & Mezzenga, R. (2010). Fibrillation of β-Lactoglobulin at Low pH in the Presence of a Complexing Anionic Polysaccharide. Langmuir, 26(22), 17449–17458.

    Article  CAS  Google Scholar 

  • Kieseker, F. G., & Clarke, D. T. (1984). The effect of storage on the properties of non-fat milk powders. Australian Journal of Dairy Technology, 39, 74–77.

    CAS  Google Scholar 

  • Le, T. T., Deeth, H. C., Bhandari, B., Alewood, P. F., & Holland, J. W. (2013). Quantification of lactosylation of whey proteins in stored milk powder using multiple reaction monitoring. Food Chemistry, 141(2), 1203–1210.

    Article  CAS  Google Scholar 

  • Lee, D., Park, C. W., Paik, S. R., & Choi, K. Y. (2009). The modification of α-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1794(3), 421–430.

    Article  CAS  Google Scholar 

  • Leinberger, D. (2006). Temperature and humidity in ocean containers, Proceedings of Dimensions. East Lansing, MI, USA: International Safe Transit Association.

    Google Scholar 

  • Li, Y., Lu, F., Luo, C., Chen, Z., Mao, J., Shoemaker, C., & Zhong, F. (2009). Functional properties of the Maillard reaction products of rice protein with sugar. Food Chemistry, 117(1), 69–74.

    Article  CAS  Google Scholar 

  • Li-Chan, E. (1983). Heat-Induced Changes in the Proteins of Whey Protein Concentrate. Journal of Food Science, 48(1), 47–56.

    Article  Google Scholar 

  • Martinez-Alvarenga, M. S., Martinez-Rodriguez, E. Y., Garcia-Amezquita, L. E., Olivas, G. I., Zamudio-Flores, P. B., Acosta-Muniz, C. H., & Sepulveda, D. R. (2014). Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate – Maltodextrin conjugates. Food Hydrocolloids, 38, 110–118.

    Article  CAS  Google Scholar 

  • Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2010). Investigation of the microstructure of milk protein concentrate powders during rehydration: alterations during storage. Journal of Dairy Science, 93(2), 463–472.

    Article  CAS  Google Scholar 

  • Morgan, F., Mollé, D., Henry, G., Vénien, A., Léonil, J., Peltre, G., et al. (1999). Glycation of bovine β-Lactoglobulin: effect on the protein structure. International Journal of Food Science and Technology, 34(5–6), 429–435.

    Article  CAS  Google Scholar 

  • Morr, C. V., & Ha, E. Y. W. (1993). Whey protein concentrates and isolates: processing and functional properties. Critical Reviews in Food Science and Nutrition, 33(6), 431–476.

    Article  CAS  Google Scholar 

  • Nicolai, T. (2015). Formation and functionality of self-assembled whey protein microgels. Colloids and Surfaces B: Biointerfaces.

  • Nicolai, T., & Durand, D. (2013). Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18(4), 249–256.

    Article  CAS  Google Scholar 

  • Nicolai, T., Britten, M., & Schmitt, C. (2011). β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocolloids, 25(8), 1945–1962.

    Article  CAS  Google Scholar 

  • Phan-Xuan, T., Durand, D., Nicolai, T., Donato, L., Schmitt, C., & Bovetto, L. (2011). On the Crucial Importance of the pH for the Formation and Self-Stabilization of Protein Microgels and Strands. Langmuir, 27(24), 15092–15101.

    Article  CAS  Google Scholar 

  • Phan-Xuan, T., Durand, D., Nicolai, T., Donato, L., Schmitt, C., & Bovetto, L. (2013). Tuning the Structure of Protein Particles and Gels with Calcium or Sodium Ions. Biomacromolecules, 14(6), 1980–1989.

    Article  CAS  Google Scholar 

  • Phan-Xuan, T., Durand, D., Nicolai, T., Donato, L., Schmitt, C., & Bovetto, L. (2014). Heat induced formation of beta-lactoglobulin microgels driven by addition of calcium ions. Food Hydrocolloids, 34, 227–235.

    Article  CAS  Google Scholar 

  • Roefs, S. P. F. M., & De Kruif, K. G. (1994). A Model for the Denaturation and Aggregation of β-Lactoglobulin. European Journal of Biochemistry, 226(3), 883–889.

    Article  CAS  Google Scholar 

  • Rouyer, B. (2012). Market for dried dairy products: trade development and investments. Saint-Malo, s.n., p. 25.

  • Sağlam, D., Venema, P., van der Linden, E., & de Vries, R. (2014). Design, properties, and applications of protein micro- and nanoparticles. Current Opinion in Colloid & Interface Science, 19(5), 428–437.

    Article  Google Scholar 

  • Schmitt, C., Bovay, C., Vuilliomenet, A.-M., Rouvet, M., Bovetto, L., Barbar, R., & Sanchez, C. (2009). Multiscale Characterization of Individualized β-Lactoglobulin Microgels Formed upon Heat Treatment under Narrow pH Range Conditions. Langmuir, 25(14), 7899–7909.

    Article  CAS  Google Scholar 

  • Schmitt, C., Moitzi, C., Bovay, C., Rouvet, M., Bovetto, L., Donato, L., et al. (2010). Internal structure and colloidal behaviour of covalent whey protein microgels obtained by heat treatment. Soft Matter, 6(19), 4876–4884.

    Article  CAS  Google Scholar 

  • Schokker, E. P., Church, J. S., Mata, J. P., Gilbert, E. P., Puvanenthiran, A., & Udabage, P. (2011). Reconstitution properties of micellar casein powder: effects of composition and storage. International Dairy Journal, 21(11), 877–886.

    Article  CAS  Google Scholar 

  • Stapelfeldt, H., Nielsen, B. R., & Skibsted, L. H. (1997). Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. International Dairy Journal, 7(5), 331–339.

    Article  CAS  Google Scholar 

  • Surroca, Y., Haverkamp, J., & Heck, A. J. R. (2002). Towards the understanding of molecular mechanisms in the early stages of heat-induced aggregation of β-lactoglobulin AB. Journal of Chromatography. A, 970(1–2), 275–285.

    Article  CAS  Google Scholar 

  • Zhou, P., & Labuza, T. P. (2007). Effect of water content on glass transition and protein aggregation of whey protein powders during short-term storage. Food Biophysics, 2(2–3), 108–116.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Centre National Interprofessionnel de l’Economie Laitière (CNIEL) for their financial support and the constructive exchange regarding the results.

The authors thank C. Cauty and the Microscopy Rennes Imaging Centre platform (MRic), situated in Rennes-1 University (France) for their contributions to the study. The authors also thank V. Briard and J. Jardin for LC-MS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Croguennec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norwood, EA., Chevallier, M., Le Floch-Fouéré, C. et al. Heat-Induced Aggregation Properties of Whey Proteins as Affected by Storage Conditions of Whey Protein Isolate Powders. Food Bioprocess Technol 9, 993–1001 (2016). https://doi.org/10.1007/s11947-016-1686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1686-1

Keywords

Navigation